Non-Tychonoff $e$-compactifiable spaces
HTML articles powered by AMS MathViewer
- by K. P. Hart and J. Vermeer
- Proc. Amer. Math. Soc. 89 (1983), 725-729
- DOI: https://doi.org/10.1090/S0002-9939-1983-0719005-6
- PDF | Request permission
Abstract:
We construct a non-Tychonoff space $X$ which is $e$-compactifiable, thus answering a question of S. Hechler. We also answer a question of R. M. Stephenson: whether there exists a Tychonoff space, the largest $e$-compactification of which has a noncompact semiregularization.References
- Manuel P. Berri and R. H. Sorgenfrey, Minimal regular spaces, Proc. Amer. Math. Soc. 14 (1963), 454–458. MR 152978, DOI 10.1090/S0002-9939-1963-0152978-9
- J. Chaber, Remarks on open-closed mappings, Fund. Math. 74 (1972), no. 3, 197–208. MR 303487, DOI 10.4064/fm-74-3-197-208
- Stephen H. Hechler, On a notion of weak compactness in non-regular spaces, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 215–237. MR 0358692
- R. M. Stephenson Jr., Not every minimal Hausdorff space is $e$-compact, Proc. Amer. Math. Soc. 52 (1975), 381–389. MR 423296, DOI 10.1090/S0002-9939-1975-0423296-4
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 725-729
- MSC: Primary 54D30; Secondary 54C10, 54D25, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0719005-6
- MathSciNet review: 719005