NOTE ON ROTATION SET

RYUICHI ITO

Abstract. Let \(f \) be an endomorphism of the circle of degree 1 and \(\tilde{f} \) be a lifting of \(f \). We characterize the rotation set \(\rho(f) \) by the set of probability measures on the circle, and prove that if \(\rho_{+}(\tilde{f}) \neq \rho_{-}(\tilde{f}) \), the upper (lower) endpoint of \(\rho(\tilde{f}) \), is irrational, then \(\rho_{+}(R_{\theta}\tilde{f}) > \rho_{+}(\tilde{f}) \) for any \(\theta > 0 \), where \(R_{\theta}(x) = x + \theta \). As a corollary, if \(f \) is structurally stable, then both \(\rho_{+}(\tilde{f}) \) and \(\rho_{-}(\tilde{f}) \) are rational.

Newhouse, Palis and Takens [3] have generalized a rotation number for a homeomorphism of the circle to a continuous map of degree 1 and defined a rotation set. Let \(R \) denote the real numbers, \(Z \) the integers, \(N \) the positive integers and \(S = R/Z \) the circle. Let \(\pi: R \to S \) denote the canonical projection. Let \(f: S \to S \) be a given continuous map of degree 1. Choose a lifting \(\tilde{f}: R \to R \), that is a map such that \(\pi \tilde{f} = f \pi \). Liftings exist and are unique up to the addition of an integer. Each lifting satisfies \(\tilde{f}(x + 1) = \tilde{f}(x) + 1 \).

Definition. Given \(x \in R \), define the rotation number

\[
\rho(\tilde{f}, x) = \limsup_{n \to \infty} \frac{1}{n} (\tilde{f}^n(x) - x).
\]

Define the rotation set to be \(\rho(\tilde{f}) = \{\rho(\tilde{f}, x) | x \in R \} \).

Notice that if a different lifting is used, this nearly has the effect of translating the rotation set by an integer.

We recall the following properties of \(\rho(\tilde{f}) \).

1. If \(f = hgh^{-1} \) for an orientation preserving homeomorphism \(h \) of \(S \), then \(\rho(\tilde{f}) = \rho(\tilde{g}) \) for suitable liftings \(\tilde{f} \) and \(\tilde{g} \).

2. \(\rho(\tilde{f}) \) is either one point or a closed interval.

3. For any \(\alpha \in \rho(\tilde{f}) \), there exists \(x \in R \) such that \(\lim_{n \to \infty}(\tilde{f}^n(x) - x)/n = \alpha \).

(1) is trivial from the definition. See [2] and [3] for (2), (3) and other elementary properties of \(\rho(\tilde{f}) \). By (2) we may denote the upper and lower endpoints of \(\rho(\tilde{f}) \) by \(\rho_{+}(\tilde{f}) \) and \(\rho_{-}(\tilde{f}) \) respectively.

The aim of this paper is to prove the following

Theorem 1. Let \(M \) be the set of probability measures on \(S \) invariant with respect to \(f \). Let \(\varphi = \tilde{f} - \text{Id}: S \to R \) where \(\text{Id}: R \to R \) denotes identity. Then \(\rho(\tilde{f}) = \{\mu(\varphi) | \mu \in M \} \).

Received by the editors November 8, 1982.

1980 Mathematics Subject Classification. Primary 58F20.

Key words and phrases. Rotation set.

©1983 American Mathematical Society

0002-9939/83 $1.00 + $.25 per page
Notes. (i) The set of probability measures on \(S \) is regarded as the set of positive linear functionals \(\mu \) on \(C(S) \) such that \(\mu(1) = 1 \).

(ii) \(S \) is considered to be \([0, 1]\) with 0 and 1 identified, and \(\varphi(x) = \hat{f}(x) - x \) for \(x \in [0, 1] \).

Theorem 2. If \(\rho, (\hat{f}) \) (\(\rho, (\hat{f}) \)) is irrational and \(\theta > 0 \), then \(\rho, (R_\theta \hat{f}) > \rho, (\hat{f}) \) (\(\rho, (R_\theta \hat{f}) > \rho, (\hat{f}) \)) where \(R_\theta : R \to R \) is defined as \(R_\theta(x) = x + \theta \).

These two theorems are generalizations of properties given in Herman [1] for the case \(f \) is a homomorphism of \(S \).

Considering (1) and Theorem 2, we obtain the following

Corollary. If \(f \) is structurally stable, then both \(\rho, (\hat{f}) \) and \(\rho, (\hat{f}) \) are rational.

Proof of Theorem 1. By (3) above, for any \(\alpha \in \rho(f) \), there exists \(x \in S \) satisfying

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{\ell=0}^{n-1} \varphi(f'(x)) = \lim_{n \to \infty} \frac{1}{n} (\hat{f}^n(x) - x) = \alpha
\]

where \(\varphi = \hat{f} - \text{Id} \).

Define \(\mu_n : C(S) \to \mathbb{R} \) by \(\mu_n(g) = n^{-1} \sum_{\ell=0}^{n-1} g(f'(x)) \) for \(g \in C(S) \) using \(x \) above. Then \(\mu_n \) is a probability measure on \(S \). Since the set of probability measures is weak* compact, there is a subsequence \(\{\mu_{n_k}\} \) of \(\{\mu_n\} \) which converges weakly to a probability measure, say \(\mu \). That is, we have \(\mu_{k_n}(g) \to \mu(g) \) for any \(g \in C(S) \).

Taking \(\varphi = f - \text{Id} \) for \(g \), we have \(\mu_{k_n}(\varphi) \to \mu(\varphi) \), while by definition,

\[
\lim_{n \to \infty} \mu_{k_n}(\varphi) = \lim_{n \to \infty} \frac{1}{k_n} \sum_{i=0}^{k_n-1} \varphi(f'(x)) = \alpha.
\]

Therefore, we have \(\mu(\varphi) = \alpha \). Since \(\lim_{n \to \infty} \mu_{k_n}(g) = \mu(g) \), \(\mu \) is invariant with respect to \(f \).

Consequently \(\rho(\hat{f}) \subset \{\mu(\varphi) | \mu \in M\} \). On the other hand, for any rational \(p/q < \rho, (f) \), we have \(\hat{f}^q(x) - x - p > 0 \) for any \(x \in S \). Thus \(\mu(\hat{f}^q - \text{Id} - q \cdot p/q) > 0 \) for any \(\mu \in M \), while

\[
\mu(\hat{f}^q - \text{Id} - q\mu(\varphi)) = \mu\left(\sum_{i=0}^{q-1} (\hat{f} - \text{Id}) \circ f^i\right) - q\mu(\varphi) = 0.
\]

Therefore \(\mu(\varphi) > p/q \).

By the same reasoning, we have \(\mu(\varphi) < p/q \) for any rational \(p/q > \rho, (f) \). Since \(\rho(\hat{f}) \) is a closed set and \(\rho(\hat{f}) \subset \{\mu(\varphi) | \mu \in M\} \), we have \(\rho(\hat{f}) = \{\mu(\varphi) | \mu \in M\} \).

We need two lemmas to prove Theorem 2.

Lemma 1. For any irrational number \(\alpha \) there exists a monotone decreasing sequence \(\{p_n/q_n\} \) (and a monotone increasing sequence \(\{p'_n/q'_n\} \)) of rationals converging to \(\alpha \) and satisfying \(p_n/q_n - \alpha < 1/q_n^2 \) \((\alpha - p'_n/q'_n < 1/q_n^2) \).

As this is a well-known fact in arithmetic, we do not give the proof.
Lemma 2. Let $\theta > 0$. For any $k \in \mathbb{N}$ and any $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that $y \leq x$ and $(R_\theta \hat{f})^k(y) \geq \hat{f}^k(x) + \theta$.

Proof. We prove this by induction. For $k = 1$ it is trivial. Assume the lemma is true for k, then we have $y \leq x$ and $(R_\theta \hat{f})^k(y) \geq \hat{f}^k(x) + \theta$. Since $(R_\theta \hat{f})^k(s + n) = (R_\theta \hat{f})^k(s) + n$ for $n \in \mathbb{Z}$, we have $z \leq y$ such that $(R_\theta \hat{f})^k(z) = \hat{f}^k(x)$, then

$$(R_\theta \hat{f})^{k+1}(z) = \hat{f}((R_\theta \hat{f})^k(z)) + \theta$$

$= \hat{f}(\hat{f}^k(x)) + \theta = \hat{f}^{k+1}(x) + \theta$$

and $z \leq x$, completing the induction. □

Proof of Theorem 2. We prove the theorem for $\rho_+ (\hat{f})$ because the $\rho_- (\hat{f})$ case is similar. By Lemma 1, we may choose a sequence $\{p_n/q_n\}$ of rationals such that $\{p_n/q_n\} \uparrow \alpha$ and $p_n/q_n - 1/q_n^2 < \alpha$. Since $\rho_+ (\hat{f}) = \alpha$, we have $\hat{f}^{q_n}(x) - x < p_n$ for any $x \in \mathbb{R}$. Suppose that there exists $\theta > 0$ such that $\hat{f}^{q_n}(x) - x < p_n - \theta$ for any $n \in \mathbb{N}$ and any $x \in \mathbb{R}$. Take q_n large enough to satisfy $q_n \theta > 1$, then we have

$$\hat{f}^{q_n}(x) - x = \sum_{i=0}^{q_n-1} \{\hat{f}^{i}(\hat{f}^{q_n}(x)) - \hat{f}^{i+1}(x)\} < q_n(p_n - \theta) < q_n p_n - 1.$$

Thus, we have $\rho_+ (\hat{f}) < (q_n p_n - 1)/q_n^2 < \alpha$, contradicting $\rho_+ (\hat{f}) = \alpha$. Therefore, for any $\theta > 0$, there exist $n \in \mathbb{N}$ and $x \in \mathbb{R}$ such that $\hat{f}^{q_n}(x) - x \geq p_n - \theta$. On the other hand, by Lemma 2, there exists $y \leq x$ satisfying $(R_\theta \hat{f})^{q_n}(y) \geq \hat{f}^{q_n}(x) + \theta$. Thus, we have $(R_\theta \hat{f})^{q_n}(y) - y \geq \hat{f}^{q_n}(x) - x + \theta \geq p_n$. Therefore, $\rho_+ (R_\theta \hat{f}) \geq p_n/q_n > \alpha$, completing the proof. □

References

Department of Mathematics, School of Education, Waseda University, Shinjuku, Tokyo, Japan