Note on rotation set
HTML articles powered by AMS MathViewer
- by Ryuichi Ito
- Proc. Amer. Math. Soc. 89 (1983), 730-732
- DOI: https://doi.org/10.1090/S0002-9939-1983-0719006-8
- PDF | Request permission
Abstract:
Let $f$ be an endomorphism of the circle of degree 1 and $\bar f$ be a lifting of $f$. We characterize the rotation set $\rho (\bar f)$ by the set of probability measures on the circle, and prove that if ${\rho _ + }(\bar f)\;({\rho _ - }(\bar f))$, the upper (lower) endpoint of $\rho (\bar f)$, is irrational, then ${\rho _ + }({R_\theta }\bar f) > {\rho _ + }(\bar f)\;({\rho _ - }({R_\theta }\bar f) > {\rho _ - }(\bar f))$ for any $\theta > 0$, where ${R_\theta }(x) = x + \theta$. As a corollary, if $f$ is structurally stable, then both ${\rho _ + }(\bar f)$ and ${\rho _ - }(\bar f)$ are rational.References
- M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979).
- Ryuichi Ito, Rotation sets are closed, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 107–111. MR 591976, DOI 10.1017/S0305004100057984 S. Newhouse, J. Palis and F. Takens, Stable families of dynamical system. I: diffeomorphisms, I.M.P.A., Rio de Janeiro, Brazil, 1979, preprint.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 730-732
- MSC: Primary 58F99
- DOI: https://doi.org/10.1090/S0002-9939-1983-0719006-8
- MathSciNet review: 719006