Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A formula for distribution trace characters on nilpotent Lie groups

Authors: L. Corwin and F. P. Greenleaf
Journal: Proc. Amer. Math. Soc. 89 (1983), 738-742
MSC: Primary 22E27; Secondary 22E25
MathSciNet review: 719008
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The distribution trace character ${\theta _\pi }$ of an irreducible representation $\pi$ on a simply connected nilpotent Lie group $N$ is described as a superposition of unitary characters on certain subgroups, in terms of the canonical objects introduced by R. Penney [8]. For $l \in {\mathfrak {n}^*}$, define ${\mathfrak {h}_1}(l) =$ smallest ideal containing the radical $\mathfrak {r}(l)$, and ${\mathfrak {h}_{k + 1}}(l) = {\mathfrak {h}_1}(l|{\mathfrak {h}_k}(l))$. These subalgebras terminate in a subordinate subalgebra ${\mathfrak {h}_\infty }(l)$ after finitely many steps. If ${H_\infty } = \exp ({\mathfrak {h}_\infty })$, ${\mathcal {X}_\infty } = ({e^{2\pi il}}) \circ \log |{H_\infty }$, and $({\mathcal {X}_\infty },{H_\infty }) \cdot n = ({\mathcal {X}_\infty } \cdot n,\;{H_\infty } \cdot n)$, where ${H_\infty } \cdot n = {n^{ - 1}}{H_\infty }n$, ${\mathcal {X}_\infty }\cdot n(h’) = {\mathcal {X}_\infty }(nh’{n^{ - 1}}){\text { on }}{H_\infty } \cdot n$, then $\left \langle {{\theta _\pi },\phi } \right \rangle = {\smallint _{{K_\infty }\backslash N}}\left \langle {({\mathcal {X}_\infty },{H_\infty }) \cdot n,\phi } \right \rangle d\dot n$, where the pair $({\mathcal {X}_\infty },{H_\infty }) \cdot n$ is regarded as the tempered distribution $\left \langle {({\mathcal {X}_\infty },{H_\infty }) \cdot n,\phi } \right \rangle = {\smallint _{{H_\infty }}}{\mathcal {X}_\infty }(h)\phi ({n^{ - 1}}hn)dh$, and where ${\mathfrak {k}_\infty } = \{ X \in \mathfrak {n}:l[{h_\infty },X] = 0\}$ gives the stabilizer of the pair $({\mathcal {X}_\infty },{H_\infty })$. The integral over ${K_\infty }\backslash N$ is absolutely convergent for any Schwartz function $\phi$ on $N$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E27, 22E25

Retrieve articles in all journals with MSC: 22E27, 22E25

Additional Information

Article copyright: © Copyright 1983 American Mathematical Society