A formula for distribution trace characters on nilpotent Lie groups
HTML articles powered by AMS MathViewer
- by L. Corwin and F. P. Greenleaf
- Proc. Amer. Math. Soc. 89 (1983), 738-742
- DOI: https://doi.org/10.1090/S0002-9939-1983-0719008-1
- PDF | Request permission
Abstract:
The distribution trace character ${\theta _\pi }$ of an irreducible representation $\pi$ on a simply connected nilpotent Lie group $N$ is described as a superposition of unitary characters on certain subgroups, in terms of the canonical objects introduced by R. Penney [8]. For $l \in {\mathfrak {n}^*}$, define ${\mathfrak {h}_1}(l) =$ smallest ideal containing the radical $\mathfrak {r}(l)$, and ${\mathfrak {h}_{k + 1}}(l) = {\mathfrak {h}_1}(l|{\mathfrak {h}_k}(l))$. These subalgebras terminate in a subordinate subalgebra ${\mathfrak {h}_\infty }(l)$ after finitely many steps. If ${H_\infty } = \exp ({\mathfrak {h}_\infty })$, ${\mathcal {X}_\infty } = ({e^{2\pi il}}) \circ \log |{H_\infty }$, and $({\mathcal {X}_\infty },{H_\infty }) \cdot n = ({\mathcal {X}_\infty } \cdot n,\;{H_\infty } \cdot n)$, where ${H_\infty } \cdot n = {n^{ - 1}}{H_\infty }n$, ${\mathcal {X}_\infty }\cdot n(h’) = {\mathcal {X}_\infty }(nh’{n^{ - 1}}){\text { on }}{H_\infty } \cdot n$, then $\left \langle {{\theta _\pi },\phi } \right \rangle = {\smallint _{{K_\infty }\backslash N}}\left \langle {({\mathcal {X}_\infty },{H_\infty }) \cdot n,\phi } \right \rangle d\dot n$, where the pair $({\mathcal {X}_\infty },{H_\infty }) \cdot n$ is regarded as the tempered distribution $\left \langle {({\mathcal {X}_\infty },{H_\infty }) \cdot n,\phi } \right \rangle = {\smallint _{{H_\infty }}}{\mathcal {X}_\infty }(h)\phi ({n^{ - 1}}hn)dh$, and where ${\mathfrak {k}_\infty } = \{ X \in \mathfrak {n}:l[{h_\infty },X] = 0\}$ gives the stabilizer of the pair $({\mathcal {X}_\infty },{H_\infty })$. The integral over ${K_\infty }\backslash N$ is absolutely convergent for any Schwartz function $\phi$ on $N$.References
- L. Corwin and F. P. Greenleaf, Singular Fourier integral operators and representations of nilpotent Lie groups, Comm. Pure Appl. Math. 31 (1978), no. 6, 681–705. MR 502137, DOI 10.1002/cpa.3160310605
- Lawrence Corwin, Frederick P. Greenleaf, and Richard Penney, A canonical formula for the distribution kernels of primary projections in $L^{2}$ of a nilmanifold, Comm. Pure Appl. Math. 30 (1977), no. 3, 355–372. MR 430157, DOI 10.1002/cpa.3160300308
- Jacques Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. IV, Canadian J. Math. 11 (1959), 321–344 (French). MR 106963, DOI 10.4153/CJM-1959-034-8
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- Roger E. Howe, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math. 73 (1977), no. 2, 329–363. MR 578891
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Calvin C. Moore and Joseph A. Wolf, Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185 (1973), 445–462 (1974). MR 338267, DOI 10.1090/S0002-9947-1973-0338267-9
- Richard C. Penney, Canonical objects in Kirillov theory on nilpotent Lie groups, Proc. Amer. Math. Soc. 66 (1977), no. 1, 175–178. MR 453922, DOI 10.1090/S0002-9939-1977-0453922-7
- L. Pukánszky, Leçons sur les représentations des groupes, Monographies de la Société Mathématique de France, No. 2, Dunod, Paris, 1967 (French). MR 0217220
- L. Pukanszky, On Kirillov’s character formula, J. Reine Angew. Math. 311(312) (1979), 408–440. MR 549982, DOI 10.1515/crll.1979.311-312.408
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 89 (1983), 738-742
- MSC: Primary 22E27; Secondary 22E25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0719008-1
- MathSciNet review: 719008