COBORDISM AND THE NONFINITE HOMOTOPY TYPE OF SOME DIFFEOMORPHISM GROUPS

DANIEL S. CHESS

ABSTRACT. Unoriented cobordism, a geometric construction, and a theorem of Browder on finite *H*-spaces are used to give new examples of manifolds whose diffeomorphism groups have identity component of nonfinite homotopy type.

The nature of the group Diff(M) of smooth diffeomorphisms of a smooth manifold is of considerable current interest. It is known in many cases, and expected for most M, that $\text{Diff}_0(M)$, the identity component of Diff(M) under the C^{∞} topology, is not of finite homotopy type [1]. Our purpose is to give a simple construction of examples of this phenomenon.

The existence of these examples follows directly from a result in the theory of H-spaces, a geometrical construction, and a calculation in the unoriented cobordism ring.

FACT 1. Let X be an arcwise connected H-space. Then if X is of finite homotopy type, $\pi_2(X) = 0$ [2].

Let \Re_* denote the unoriented cobordism ring. An element [M] of \Re_* is said to fiber over the *n*-sphere Sⁿ if and only if there is a representative M of [M] and a smooth fiber bundle $p: M \to S^n$. Denote by \Re^n the subset of elements of \Re_* which fiber over Sⁿ. Clearly \Re^n is an ideal of \Re_* .

FACT 2. $\mathfrak{R}^{n+1} \subset \mathfrak{R}^n$.

The proof is by the following construction due to H. Winkelnkemper. Suppose $[M] \in \mathbb{R}^{n+1}$ is represented by $F \xrightarrow{i} M \xrightarrow{p} S^{n+1}$. As $0 = [F \times S^{n+1}] \in \mathbb{R}^{n+1}$ by considering $M + F \times S^{n+1}$ (disjoint union), M is represented by

$$F \times \{-1,1\} \to M + F \times S^{n+1} \to S^{n+1},$$

where

$$F \times \{-1,1\} = \partial(F \times [-1,1]).$$

Now

$$M + F \times S^{n+1} = F \times \{-1,1\} \times D^{n+1} \cup F \times \{-1,1\} \times D^{n+1}$$
$$(F \times \{-1,1\} \times S^n, \tilde{g}),$$

where $g: (S^n, *) \to (\text{Diff}(F), \text{id})$ is a smooth map and $\tilde{g}: F \times \{-1, 1\} \times S^n \to F \times \{-1, 1\} \times S^n$ is given by $\tilde{g}(x, -1, s) = (g(s)(x), -1, s)$ and $\tilde{g}(x, 1, s) = (x, 1, s)$.

©1983 American Mathematical Society 0002-9939/83 \$1.00 + \$.25 per page

Received by the editors September 13, 1982 and, in revised form, May 2, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57R50, 57R75.

Extend \tilde{g} to \bar{g} on $F \times ([-1, -\frac{1}{2}] \cup [\frac{1}{2}, 1]) \times S^n$ by $\bar{g}(x, -t^2, s) = (g(s)(x), -t^2, s)$ and $\bar{g}(x, t^2, s) = (x, t^2, s)$. The manifold

$$N = F \times [-1, 1] \times D^{n+1} \cup F \times [-1, 1] \times D^{n+1}$$
$$\left(F \times \left([-1, -\frac{1}{2}] \cup [\frac{1}{2}, 1]\right) \times S^{n}, \bar{g}\right)$$

whose boundary is the disjoint union of $M \cup F \times S^{n+1}$ and a fiber bundle over S^n with fiber

$$F \times \left[-\frac{1}{2}, \frac{1}{2}\right] \cup F \times \left[-\frac{1}{2}, \frac{1}{2}\right] = F \times S^{1}$$
$$\left(\partial \left(F \times \left[-\frac{1}{2}, \frac{1}{2}\right]\right), \text{id}\right)$$

is the required cobordism.

We now describe the relation between the clutching functions for the boundary of N. Denote by $\Omega_s(\text{Diff}(F))$ the appropriately topologized space of smooth maps of $(S^1, *)$ to (Diff(F), id). Then there is an obvious map

$$e: \Omega_{s}(\operatorname{Diff}(F)) \to \operatorname{Diff}(F \times S^{1})$$

given by e(l)(x, t) = (l(t)(x), t). Denoting by $\Omega(\text{Diff}(F))$ the loop space of $\text{Diff}_0(F)$, *i*: $\Omega_s(\text{Diff}(F)) \to \Omega(\text{Diff}(F))$ is a homotopy equivalence. Regarding $\pi_i(\text{Diff}_0(F))$ as $\pi_{i-1}\Omega_s(\text{Diff}(F))$, we have the map

$$\tilde{e}: \pi_i(\operatorname{Diff}_0(F)) \to \pi_{i-1}(\Omega_s\operatorname{Diff}(F)) \xrightarrow{c_*} \pi_{i-1}\operatorname{Diff}(F \times S^1).$$

Given a smooth fiber bundle $F \to M \to S^{n+1}$, $n \ge 1$, determined by a clutching class $g \in \pi_n(\text{Diff}_0(F))$, the bundle over S^n constructed above has fiber $F \times S^1$ and clutching class $\tilde{e}(g) \in \pi_{n-1}$ Diff $(F \times S^1)$.

OBSERVATION 3. Let $0 \neq [M] \in \mathfrak{R}^3$ and let $F \to M \to S^3$ be a representative of M with clutching class g. Then $0 \neq [g] \in \pi_2 \text{Diff}_0(F)$.

Thus in order to show the existence of manifolds F with $\text{Diff}_0(F)$ of nonfinite homotopy type, it suffices to show $0 \neq \Re^i$ for some $i \ge 3$.

As \mathfrak{R}_* is a polynomial ring over Z_2 , ϕ^2 : $\mathfrak{R}_* \to \mathfrak{R}_*$; ϕ^2 : $x \mapsto x^4$ is an injective homomorphism. Let $K_1 \subset \mathfrak{R}_*$ be the kernel of χ : $\mathfrak{R}_* \to Z_2$, where χ is the mod 2 Euler characteristic.

FACT 4. $\phi^2(K_1) \subset \mathfrak{R}^4$ [3, 7.3]. Hence $0 \neq \mathfrak{R}^4 \subset \mathfrak{R}^3$.

The generators of $\phi^2[K_1]$ represented by elements of \Re^4 which are given in §7 of [3] are all determined by $S^3 = \text{Sp}(1)$ actions on manifolds with evidently nontrivial rational pontryagin classes so that these examples differ from those of [1].

It is worthwhile to consider the examples of [3] more explicitly. Let F be R, C or H, let G(F) be the group of unit norm elements of F, and let S(kF) denote the unit sphere in kF. $G(F)^{k+1}$ denotes the (k + 1)-fold direct product of G(F), and $\Sigma^{k}(F)$ denotes the k-fold direct product of S(2F). We define a $G(F)^{k+1}$ action on $\Sigma^{k}(F) \times S((n + 1)F)$ by

$$(t_1, \dots, t_{k+1})((q_1, p_1), \dots, (q_k, p_k), (\rho_1, \dots, \rho_{n+1}))) = ((q_1t_1^{-1}, p_1t_1^{-1}), \dots, (q_jt_j^{-1}, t_{j-1}p_jt_j^{-1}), \dots, (q_kt_k^{-1}, t_{k-1}p_kt_k^{-1})) \\ (t_k\rho_1t_{k+1}^{-1}, \rho_2t_{k+1}^{-1}, \dots, \rho_{n+1}t_{k+1}^{-1})$$

Denote the quotient manifold of this principal action by $V(n, k; \mathbf{F})$. A point in the p(n + k) manifold $V(n, k; \mathbf{F})$ (p = 1, 2, 4) is denoted $[(q_1, p_1), \dots, (q_k, p_k), (p_1, \dots, p_{n+1})]$. The map $V(n, k; \mathbf{F}) \rightarrow \mathbf{FP}(1) = S^1, S^2, S^4$ given by

$$[(q_1, p_1), \dots, (q_k, p_k); (p_1, \dots, p_{n+1})] \rightarrow [(p_1, q_1)]$$

is a fiber map with fiber $V(n, k - 1; \mathbf{F})$ and structure group $G(\mathbf{F})$ where the action of $G(\mathbf{F})$ on $V(n, k - 1; \mathbf{F})$ is given by

$$t[(q_1, p_1), \dots, (q_{k-1}, p_{k-1}), (\rho_1, \dots, \rho_{n+1})] = [(q_1, tp_1), (q_2, p_2), \dots, (q_{k-1}, p_{k-1}), (\rho_1, \dots, \rho_{n+1})].$$

Connor and Floyd established the following results, where [M] denotes the class of M in \mathfrak{R}_* .

THEOREM. $[V(n, k; \mathbf{C})] = [V(n, k; \mathbf{R})]^2$, $[V(n, k; \mathbf{Q})] = [V(n, k; \mathbf{C})]^2$, $[V(2, 2p; \mathbf{R})]$ is indecomposable in $\Re_{2(p+1)}$.

As a straightforward result of Wall's computation of Ω_* , oriented bordism [4] we have

PROPOSITION. Let $F: \Omega_* \to \mathfrak{R}_*$ be the forgetful map. If $x \in \mathfrak{R}_*$ is a power of an even indecomposable then $x \notin F(\operatorname{tor} \Omega_*)$.

The manifold $V(n, k; \mathbf{H})$ is orientable; choosing an orientation, let $\{V(n, k; \mathbf{H})\}$ denote its class in Ω_* . From the results just quoted we have $\{V(2, 2p; \mathbf{H})\}$ is not torsion. Note that the Winkelnkemper construction produces oriented bordisms from oriented bundles. Also note that for oriented manifolds F^k the map

$$\pi_i \operatorname{Diff}_0(F) \to \pi_{i+1} \operatorname{B} \operatorname{Diff}_0(F) \to \Omega_{i+k+1}$$

that takes a fiber bundle over S^{i+1} to the oriented cobordism class of its total space is a homomorphism. Thus the elements of $\pi_2 \operatorname{Diff}_0(V(2, 2(p-1); \mathbf{H}) \times S^1)$ produced by the Wilkelnkemper construction on $V(2, 2p; \mathbf{H}) \to S^4$ are not torsion. We may then appeal to the classical theorem of Hopf, rather than that of Browder, in asserting the nonfinite homotopy type of $\operatorname{Diff}_0(V(2, 2(p-1); \mathbf{H}) \times S^1)$.

BIBLIOGRAPHY

1. P. L. Antonelli, D. Burghelea and P. J. Kahn, The nonfinite homotopy type of some diffeomorphism groups, Topology 11 (1972), 1-44.

2. W. Browder, Torsion in H-spaces, Ann. of Math. (2) 74 (1961), 27-51.

3. P. F. Conner and E. R. Floyd, Fibring within a cobordism class, Michigan Math. J. 12 (1965), 33-47.

4. C. T. C. Wall, Determination of the corbodism ring, Ann. of Math. (2) 72 (1960), 292-311.

DEPARTMENT OF MATHEMATICAL SCIENCES, HUNTER COLLEGE, NEW YORK, NEW YORK 10021