Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Terminal quotient singularities in dimensions three and four
HTML articles powered by AMS MathViewer

by David R. Morrison and Glenn Stevens PDF
Proc. Amer. Math. Soc. 90 (1984), 15-20 Request permission


We classify isolated terminal cyclic quotient singularities in dimension three, and isolated Gorenstein terminal cyclic quotient singularities in dimension four. In addition, we give a new proof of a combinatorial lemma of G. K. White using Bernoulli functions.
  • Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, DOI 10.2307/2372597
  • V. I. Danilov, Birational geometry of three-dimensional toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 971–982, 1135 (Russian). MR 675526
  • M. A. Frumkin, Description of elementary three-dimensional polyhedra, First All-Union Conference on Statistical and Discrete Analysis of Non-Numerical Information, Experimental Bounds and Discrete Optimization, Abstract of Conference Reports, Moscow-Alma-Ata, 1981. (Russian)
  • Akira Fujiki, On resolutions of cyclic quotient singularities, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 293–328. MR 0385162, DOI 10.2977/prims/1195192183
  • Kenkichi Iwasawa, Lectures on $p$-adic $L$-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0360526
  • V. A. Hinič, When is a ring of invariants of a Gorenstein ring also a Gorenstein ring?, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 1, 50–56, 221 (Russian). MR 0424839
  • Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603
  • Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, DOI 10.2307/2007050
  • David Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375–386. MR 210944
  • Miles Reid, Canonical $3$-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
  • —, Minimal models of canonical $3$-folds, Algebriac Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math., vol. 1, North-Holland, Amsterdam, 1983.
  • Michael Artin and John Tate (eds.), Arithmetic and geometry. Vol. I, Progress in Mathematics, vol. 35, Birkhäuser, Boston, Mass., 1983. Arithmetic; Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. MR 717586
  • G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, DOI 10.4153/cjm-1954-028-3
  • Yung-Sheng Tai, On the Kodaira dimension of the moduli space of abelian varieties, Invent. Math. 68 (1982), no. 3, 425–439. MR 669424, DOI 10.1007/BF01389411
  • S. Tsunoda, Degeneration of minimal surfaces with non-negative Kodaira dimension, Proc. Sympos. Algebraic Geometry, Kinosaki, Japan, 1981. (Japanese)
  • Keiichi Watanabe, Certain invariant subrings are Gorenstein. I, II, Osaka Math. J. 11 (1974), 1–8; ibid. 11 (1974), 379–388. MR 354646
  • G. K. White, Lattice tetrahedra, Canadian J. Math. 16 (1964), 389–396. MR 161837, DOI 10.4153/CJM-1964-040-2
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14B05, 14J30, 14J35
  • Retrieve articles in all journals with MSC: 14B05, 14J30, 14J35
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 90 (1984), 15-20
  • MSC: Primary 14B05; Secondary 14J30, 14J35
  • DOI:
  • MathSciNet review: 722406