## Terminal quotient singularities in dimensions three and four

HTML articles powered by AMS MathViewer

- by David R. Morrison and Glenn Stevens PDF
- Proc. Amer. Math. Soc.
**90**(1984), 15-20 Request permission

## Abstract:

We classify isolated terminal cyclic quotient singularities in dimension three, and isolated Gorenstein terminal cyclic quotient singularities in dimension four. In addition, we give a new proof of a combinatorial lemma of G. K. White using Bernoulli functions.## References

- Claude Chevalley,
*Invariants of finite groups generated by reflections*, Amer. J. Math.**77**(1955), 778–782. MR**72877**, DOI 10.2307/2372597 - V. I. Danilov,
*Birational geometry of three-dimensional toric varieties*, Izv. Akad. Nauk SSSR Ser. Mat.**46**(1982), no. 5, 971–982, 1135 (Russian). MR**675526**
M. A. Frumkin, - Akira Fujiki,
*On resolutions of cyclic quotient singularities*, Publ. Res. Inst. Math. Sci.**10**(1974/75), no. 1, 293–328. MR**0385162**, DOI 10.2977/prims/1195192183 - Kenkichi Iwasawa,
*Lectures on $p$-adic $L$-functions*, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR**0360526** - V. A. Hinič,
*When is a ring of invariants of a Gorenstein ring also a Gorenstein ring?*, Izv. Akad. Nauk SSSR Ser. Mat.**40**(1976), no. 1, 50–56, 221 (Russian). MR**0424839** - Daniel S. Kubert and Serge Lang,
*Modular units*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR**648603** - Shigefumi Mori,
*Threefolds whose canonical bundles are not numerically effective*, Ann. of Math. (2)**116**(1982), no. 1, 133–176. MR**662120**, DOI 10.2307/2007050 - David Prill,
*Local classification of quotients of complex manifolds by discontinuous groups*, Duke Math. J.**34**(1967), 375–386. MR**210944** - Miles Reid,
*Canonical $3$-folds*, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR**605348**
—, - Michael Artin and John Tate (eds.),
*Arithmetic and geometry. Vol. I*, Progress in Mathematics, vol. 35, Birkhäuser, Boston, Mass., 1983. Arithmetic; Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. MR**717586** - G. C. Shephard and J. A. Todd,
*Finite unitary reflection groups*, Canad. J. Math.**6**(1954), 274–304. MR**59914**, DOI 10.4153/cjm-1954-028-3 - Yung-Sheng Tai,
*On the Kodaira dimension of the moduli space of abelian varieties*, Invent. Math.**68**(1982), no. 3, 425–439. MR**669424**, DOI 10.1007/BF01389411
S. Tsunoda, - Keiichi Watanabe,
*Certain invariant subrings are Gorenstein. I, II*, Osaka Math. J.**11**(1974), 1–8; ibid. 11 (1974), 379–388. MR**354646** - G. K. White,
*Lattice tetrahedra*, Canadian J. Math.**16**(1964), 389–396. MR**161837**, DOI 10.4153/CJM-1964-040-2

*Description of elementary three-dimensional polyhedra*, First All-Union Conference on Statistical and Discrete Analysis of Non-Numerical Information, Experimental Bounds and Discrete Optimization, Abstract of Conference Reports, Moscow-Alma-Ata, 1981. (Russian)

*Minimal models of canonical*$3$

*-folds*, Algebriac Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math., vol. 1, North-Holland, Amsterdam, 1983.

*Degeneration of minimal surfaces with non-negative Kodaira dimension*, Proc. Sympos. Algebraic Geometry, Kinosaki, Japan, 1981. (Japanese)

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**90**(1984), 15-20 - MSC: Primary 14B05; Secondary 14J30, 14J35
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722406-4
- MathSciNet review: 722406