ON SYLOW INTERSECTIONS IN FINITE GROUPS

GEOFFREY R. ROBINSON

Abstract. In general, for a given prime p and finite group G, there need not be Sylow p-subgroups P and Q of G with $P \cap Q = O_p(G)$. In this paper we show that if G is p-soluble, and p is not 2 or a Mersenne prime, then such Sylow p-subgroups exist (also we give conditions guaranteeing the existence of such Sylow subgroups when p is 2 or a Mersenne prime). We also show that if G is not p-soluble, but p is odd and the components of $G/O_p(G)$ are in a certain class of quasi-simple groups, then there are Sylow p-subgroups P and Q of G with $P \cap Q = O_p(G)$, unless perhaps p is a Mersenne prime. When G is p-soluble, our work extends results of N. Itô [2].

In general, when G is a finite group and p is a prime divisor of $|G|$, there need not be Sylow p-subgroups P and Q of G such that $P \cap Q = O_p(G)$. The aim of this note is to prove that in many situations, though, there are such Sylow p-subgroups.

Our first observation is that “regular-orbit” theorems such as that of Hargreaves [1] can be used to establish the existence of such Sylow subgroups in p-solvable groups when $p \neq 2$ or a Mersenne prime. More precisely, we can prove the following theorem, which slightly strengthens a result of Itô [2].

Theorem 1. Let G be a finite p-solvable group, and $P \in \text{Syl}_p(G)$. Then there is a Sylow p-subgroup, Q, of G with $P \cap Q = O_p(G)$, unless, perhaps, one of the following situations occur:

(a) $p = 2$, $P/O_p(G)$ involves $Z_2 \sim Z_2$ and $|O_{p,p}(G)|$ is divisible by the square of a Fermat prime, or the square of a Mersenne prime.

(b) p is a Mersenne prime, $P/O_p(G)$ involves $Z_p \sim Z_p$, $P/O_p(G)$ does not centralize $O_2(G/O_p(G))$, and $(p + 1)^p$ divides $|G|$.

Proof. We proceed by induction on $|G|$. Suppose that neither (a) nor (b) hold. Certainly we may suppose that $O_p(G) = 1_G$. By the Hall-Higman centralizer lemma, $C_G(O_p(G)) \leq O_p(G)$. Thus $O_p(PO_p(G)) = 1_G$, so we may suppose that $G = PO_p(G)$.

We claim that $O_p(G)$ is a q-group for some prime $q \neq p$. Let $(r_i; 1 \leq i \leq n)$ be the set of prime divisors of $|O_p(G)|$, and for each i, let R_i be a P-invariant Sylow r_i-subgroup of $O_p(G)$. Suppose that $n > 1$. If p is not a Mersenne prime, then neither (a) nor (b) hold in PR_i, so by induction there are some x_i in R_i with $P \cap P^{x_i} = C_p(R_i)$. Let $x = x_1x_2 \cdots x_n$. Then x centralizes $P \cap P^x$. Let $u \in P \cap P^x$. Then $x^u = x$, so that $x_1^ux_2^u \cdots x_n^u = x_1x_2 \cdots x_n$. Now $x_i^u \in R_i$ for each i, and
each element of $O_p(G)$ has a unique expression of the form $z_1z_2 \cdots z_n$, where each $z_i \in R_i$. Thus $x_i^u = x_i$ for each i, so that $u \in P \cap P^x_i$ for each i. Consequently, $u \in \bigcap_{i=1}^n C_p(R_i) = C_p(O_p(G)) = 1_G$. Thus $P \cap P^x = 1_G$, and we are done. Thus p is a Mersenne prime, and for some i, (b) must hold within PR_i (or we can repeat the above argument).

We may assume then that $r_1 = 2$. For $i > 1$, by induction, there is $x_i \in R_i$ with $P \cap P^x_i = C_p(R_i)$. Let $x = x_2 \cdots x_n$. Then as above, $P \cap P^x \leq \bigcap_{i=2}^n C_p(R_i)$. We may assume then that there is some nonidentity element u in $\bigcap_{i=2}^n C_p(R_i)$. Then $O_p(G) = R_iC_{O_p(G)}(u)$, so that $[O_p(G), u] \leq [R_1, u] \leq R_1$, and hence $[O_p(G), u] \leq O_2(G)$.

Now $[O_p(G), u] \neq 1_G$, so $[O_2(G), u] \neq 1_G$, as $[O_p(G), u] = [O_p(G), u, u] \leq [O_2(G), u]$. In particular P does not centralize $O_2(G)$. Now, however, as (b) does not hold in G, (b) does not hold within PR_1, contrary to assumption.

Hence $n = 1$, so that $O_p(G)$ is a q-group for some prime $q \neq p$. Let $R = O_p(G)$. We claim that R is elementary abelian. If not, then $O_p(G/\Phi(R)) = 1_G$, and by induction, there is \bar{x} in $\bar{G} = G/\Phi(R)$ with $\bar{P} \cap \bar{P}^* = 1_{\bar{G}}$. For any preimage x of \bar{x}, we have $P \cap P^x = 1_G$, so we may indeed suppose that R is elementary abelian.

Now, as R is elementary abelian, and neither (a) nor (b) hold in $G = PR$, we may appeal to the main theorem of Hargreaves [1] to conclude that for some $y \in R$, $C_p(y) = 1_G$. However, $P \cap P^y \leq C_p(y)$, as $y \in O_p(G)$, so that $P \cap P^y = 1_G$.

The proof of Theorem 1 is complete.

Remark. Of course, conditions (a) and (b) both fail to be satisfied when G has odd order. We also remark that if either (a) or (b) is satisfied, it is possible that $O_p(G)$ can fail to be a Sylow intersection, and the simplest such examples are groups of the form PQ, where P is a p-group faithfully represented as a group of automorphisms of the elementary abelian q-group Q (where the orbit of a q a prime $\neq p$), when P fails to have a regular orbit on Q.

We next consider a more general class of groups. First, a definition:

Definition. Let p be an odd prime. Let $\mathcal{S}(p) = \{\text{nonabelian finite simple groups } H \text{ such that for } P \in \text{Syl}_p(\text{Aut}(H)), P \text{ has at least two orbits (by conjugation) on involutions } t \text{ of } H \text{ with } P \cap P^t = 1_H\}$ (where H is considered as a normal subgroup of $\text{Aut}(H)$).

Remark. It seems that most finite simple groups, of order divisible by p, are in $\mathcal{S}(p)$. A proof that all (known) simple groups of order divisible by p are in $\mathcal{S}(p)$ seems feasible, but would be extremely tedious.

Before we state and prove Theorem 2, we require a technical lemma. Let p be an odd prime.

Lemma 1. Let $G = PE$, where $P \in \text{Syl}_p(G)$ and E is a minimal normal subgroup of G which is a direct product of nonabelian simple groups, each of which is in $\mathcal{S}(p)$. Then there are involutions t and u of G (which, of course, lie in E) such that $P \cap P^t = P \cap P^u = O_p(G)$, and t and u lie in different orbits under conjugation by P.

Proof. We proceed by induction on $|G|$. If E is simple, the result follows (upon passage to $G/O_p(G)$) by using the definition of $\mathcal{S}(p)$. Thus we may suppose that E
is not simple. Let \(L \) be a simple normal subgroup of \(E \), and let \(S = N_p(L) \). Let \(M \) be a maximal subgroup of \(P \) containing \(S \). (Note that \(S \neq P \) as \(E \) is minimal normal in \(E_P \), but \(E \) is not simple.)

Then for some \(x \in P \setminus M, E = YY^xY^x \cdots Y^{x^{p-1}} \) (where this latter product is direct), where \(Y = L^M \) (a direct product of \([M:S] \) isomorphic copies of \(L \)).

Let \(a \) and \(b \) be involutions of \(Y \) in different \(M \)-orbits such that \(M \cap M^a = M \cap M^b = O_p(MY) = C_M(Y) \) (by induction, such involutions exist). Let \(z = ab^ix^{p-1}b^x \cdots b^x \) and let \(w = ba^ix^{p-1} \cdots a^x \). Then \(z \) and \(w \) are involutions of \(E \). They are not conjugate under the action of \(P \), for if \(z^{x^m} = w \), where \(0 \leq i \leq p - 1 \), and \(m \in M \), then if \(i > 1 \), \(b^{x^{im}} = a^x \), so \(b^{x^{i+im-1}} = a \), a contradiction as \(x^p \in M \), but \(a \) and \(b \) are not conjugate under the action of \(M \). If \(i \leq 1 \), we obtain \(b^{x^{i+1}} = a^{x+1} \), again a contradiction.

It remains only to prove that \(P \cap P^z = P \cap P^w = O_p(G) \). We prove that \(P \cap P^z = O_p(G) \) for interchanging the roles of \(a \) and \(b \) then establishes that \(P \cap P^w = O_p(G) \).

Suppose that \(u \in P \cap P^z \). Then \(u^{-1}u^z \in P \), so that \(z^z \in P \cap E \). Let \(u = x^m \), where \(0 \leq i \leq p - 1 \), and \(m \in M \). Then

\[
(ab^ix^{p-1} \cdots b^x)(a^mb^{x^{-1}m} \cdots) \in P \cap E.
\]

We first note that \(i = 0 \). If not, then \(b^i a^{x^i}m \in P \cap Y^x \) so \(ba^{x^{im}x^{-i}} \in P \cap Y = M \cap Y \), which forces \(b \) and \(a^{x^{im}x^{-i}} \) to be conjugate by an element of \(M \) (as \(a \) and \(b \) are involutions), a contradiction. Thus \(i = 0 \).

Hence \((ab^ix^{p-1} \cdots b^x)(a^mb^{x^{-1}m} \cdots b^x) \in P \cap E \), so for \(1 \leq i \leq p - 1 \), \(b^xb^{x^i} \in P \cap Y^x \), so \(b^{x^m}x^{-i}m \in M \cap Y \). Thus \(x^mx^{-i}m \in M \cap M^b = C_M(Y) \). Also, \(aa^m \in M \cap Y \), so \(m \in M \cap m^a \) and \(m \in C_M(Y) \). Hence \(m \in \cap_{i=0}^{p-1} C_M(Y^x) = C_p(E) = O_p(G) \). Thus we have shown that \(P \cap P^z = O_p(G) \), as claimed.

Theorem 2. Let \(G \) be a finite group and \(p \) be an odd prime. Let \(P \in \text{Syl}_p(G) \).

Suppose that \(O_p(G) = 1_G \), and if \(p \) is a Mersenne prime, assume either that \(O_2(G) \leq Z(G) \), or else that \(P \) does not involve \(Z_p \sim Z_p \). Suppose further that for each component, \(L \), of \(G \) such that \(p | |L| \), \(L/Z(L) \) is in \(\mathcal{S}(p) \). Then there is a Sylow \(p \)-subgroup, \(Q \), of \(G \) such that \(P \cap Q = 1_G \).

Proof. We proceed by induction on \(|G| \). Since \(C_G(F^*(G)) \leq F^*(G) \) and \(O_p(G) = 1_G \), we see that \(O_p(F^*(G)P) = 1_G \). We may suppose, then, that \(G = PF^*(G) \). If \(O_2(G) \leq Z(G) \), we can suppose that \(F^*(G) = E(G)O(F(G)) \).

Next, we claim that \(Z(E(G)) = 1_G \). For let \(Z = Z(E(G)) \). If \(Z \neq 1_G \), then by induction, for some \(\bar{x} \in \bar{G} (= G/Z) \), we have \(\bar{P} \cap \bar{P}^{\bar{x}} = 1_G \) (for it is easy to check that \(O_p(\bar{G}) = 1_G \)). Then for some preimage, \(x \), say, of \(\bar{x} \), we have \(P \cap P^x = 1_G \).

Now we claim that \(F(G) = 1_G \). If \(F(G) \neq 1_G \), let \(F = F(G) \) and \(E = E(G) \). Since \(Z(E) = 1_G \), \(F^*(G) = F \times E \). By Theorem 1, there is some \(f \in F \) such that \(P \cap P^f = O_p(PF) = C_p(F) \). By induction, there is some \(e \in E \) such that \(P \cap P^e = C_p(E) \).

It is easy to check that \(P \cap P^{ef} \leq C_p(F^E) = 1_G \). Thus \(F = 1 \). A similar argument, using Theorem 1, shows that \(O_p(G) = 1_G \).
If E is not a minimal normal subgroup, but $E = E_1 \times E_2$, where each $E_i \triangleleft EP$, then, by induction for each i there is an $e_i \in E_i$ with $P \cap P^{e_i} = C_p(E_i)$. It quickly follows that $P \cap P^{e_1 e_2} = 1_G$. Thus E is a minimal normal subgroup of G. Now we may appeal to Lemma 1 to conclude that for some $e \in E$, we have $P \cap P^e = 1_G$. The proof of Theorem 2 is complete.

REFERENCES