Relative Barr-Rinehart and cotriple cohomology groups are isomorphic
HTML articles powered by AMS MathViewer
- by D. H. Van Osdol
- Proc. Amer. Math. Soc. 90 (1984), 40-42
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722411-8
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 92 (1984), 618.
Abstract:
The theorem, stated in the title of this article, is proved.References
- Michael Barr, A note on commutative algebra cohomology, Bull. Amer. Math. Soc. 74 (1968), 310–313. MR 220719, DOI 10.1090/S0002-9904-1968-11934-2
- Michael Barr and Jon Beck, Homology and standard constructions, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67) Springer, Berlin, 1969, pp. 245–335. MR 0258917
- Michael Barr and George S. Rinehart, Cohomology as the derived functor of derivations, Trans. Amer. Math. Soc. 122 (1966), 416–426. MR 191932, DOI 10.1090/S0002-9947-1966-0191932-5 J. Beck, Triples, algebras, and cohomology, Ph. D. dissertation, Columbia University, 1967.
- J. Duskin, Simplicial methods and the interpretation of “triple” cohomology, Mem. Amer. Math. Soc. 3 (1975), no. issue 2, 163, v+135. MR 393196, DOI 10.1090/memo/0163
- D. H. Van Osdol, Long exact sequences in the first variable for algebraic cohomology theories, J. Pure Appl. Algebra 23 (1982), no. 3, 271–309. MR 644278, DOI 10.1016/0022-4049(82)90102-5
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 40-42
- MSC: Primary 18G10; Secondary 18C15
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722411-8
- MathSciNet review: 722411