CO-WELL-POWERED REFLECTIVE SUBCATEGORIES

RUDOLF-E. HOFFMANN

Abstract. A full isomorphism-closed subcategory \mathcal{A} of a complete well-powered and co-well-powered category \mathcal{C} is both co-well-powered (in its own right) and reflective in \mathcal{C} if and only if

(a) \mathcal{A} is closed in \mathcal{C} under the formation of $(U$-small-indexed) limits, and

(b) the epi-reflective hull \mathcal{B} of \mathcal{A} in \mathcal{C} is co-well-powered.

A full isomorphism-closed subcategory \mathcal{Y} of a well-powered and co-well-powered complete category \mathcal{X} is epi-reflective in \mathcal{X} (i.e. full, isomorphism-closed and reflective with epimorphic reflection morphisms) if and only if \mathcal{Y} is stable in \mathcal{X} under the formation of products (indexed over U-small sets) and under extremal subobjects—where U denotes a fixed universe (cf. [2, p. 87; 6, p. 1276; 7, p. 356]). Indeed, a slightly weaker requirement suffices to ensure the epi-reflectiveness of \mathcal{Y} in \mathcal{X}: \mathcal{Y} is closed under $(U$-small-indexed) products and strongly closed under difference kernels, i.e. whenever $A \rightarrow B \xrightarrow{f} C$ is a difference kernel (or equalizer) in \mathcal{X} with $B \in \text{Ob} \mathcal{Y}$, then $A \in \text{Ob} \mathcal{Y}$ [3, 10.2.1].

The smallest epi-reflective subcategory \mathcal{D} of a well-powered and co-well-powered complete category \mathcal{C} containing a given subcategory \mathcal{X} of \mathcal{C}, the "epi-reflective hull" \mathcal{D} of \mathcal{X} in \mathcal{C}, consists of all \mathcal{C}-objects which are (domains of) extremal subobjects of products (over a U-small index set) of members of Ob \mathcal{X}. Every full isomorphism-closed reflective subcategory \mathcal{A} of a well-powered and co-well-powered complete category \mathcal{C} is both mono-reflective and (consequently) epi-reflective in the epi-reflective hull \mathcal{B} of \mathcal{A} in \mathcal{C} [1]. Sharpening results in [1 and 7], it is observed in [4] that a full subcategory \mathcal{A} of a complete, well-powered and co-well-powered category \mathcal{C} is reflective in \mathcal{C} if (i) and (ii) are satisfied:

(i) \mathcal{A} is stable in \mathcal{C} under the formation of $(U$-small-indexed) limits;

(ii) the epi-reflective hull \mathcal{B} of \mathcal{A} in \mathcal{C} is co-well-powered.

(Indeed, a difference kernel $X \xrightarrow{u} Y \xrightarrow{v} Z$ in \mathcal{B} with $Y \in \text{Ob} \mathcal{A}$ yields a difference kernel $X \xrightarrow{u} Y \xrightarrow{m} Z$ for some extremal monomorphism $m: Z \rightarrow A$ in \mathcal{C} with $A \in \text{Ob} \mathcal{A}$; hence $X \in \text{Ob} \mathcal{A}$ by hypothesis. Consequently, \mathcal{A} is epi-reflective in \mathcal{B}.)

While (i) is clearly necessary for reflectiveness of \mathcal{A} in \mathcal{C}, condition (ii) is not. Here we wish to add the following observations.
1. A full subcategory \(\mathcal{A} \) of a complete, well-powered and co-well-powered category \(\mathcal{C} \) is co-well-powered if the epi-reflective hull \(\mathcal{B} \) of \(\mathcal{A} \) in \(\mathcal{C} \) is also.

 Indeed, the inclusion \(\mathcal{A} \to \mathcal{B} \) preserves epimorphisms [5, 2.2].

2. A full isomorphism-closed subcategory \(\mathcal{A} \) of a complete well-powered and co-well-powered category \(\mathcal{C} \) is both co-well-powered (in its own right) and reflective in \(\mathcal{C} \) if and only if

 (a) \(\mathcal{A} \) is closed in \(\mathcal{C} \) under the formation of (\(U \)-small-indexed) limits, and

 (b) the epi-reflective hull \(\mathcal{B} \) of \(\mathcal{A} \) in \(\mathcal{C} \) is co-well-powered.

 \textbf{Proof.} It remains to establish the necessity of (b). For \(X \in \text{Ob} \mathcal{C} \), let \(r_X : X \to R(X) \) denote the \(\mathcal{A} \)-reflection morphism of \(X \). Now let \(B \in \text{Ob} \mathcal{B} \). For every \(B \)-epimorphism \(e : B \to Y \) we obtain a commutative square:

\[
\begin{array}{ccc}
R(B) & \xrightarrow{R(e)} & R(Y) \\
\uparrow r_B & & \uparrow r_Y \\
B & \xrightarrow{e} & Y
\end{array}
\]

Since \(r_Y \) is a \(B \)-epimorphism, so is \(r_Y e = R(e)r_B \); hence so is \(R(e) \). Consequently, \(R(e) \) is an epimorphism in \(\mathcal{A} \). There are suitable isomorphisms \(j_e \) in \(\mathcal{A} \) with domain \(R(Y) \) so that we obtain a mapping \(\varphi : e \mapsto j_e R(e) \) from a representative system of \(B \)-epimorphisms with domain \(B \) into a representative system of \(\mathcal{A} \)-epimorphisms with domain \(R(B) \). The latter set is \(U \)-small by hypothesis. Since \(r_Y \) is an (extremal) monomorphism and since \(\mathcal{C} \) is well-powered, the fibers of this mapping \(\varphi \) (i.e. the inverse images of single elements) are \(U \)-small. As a consequence, the domain of \(\varphi \) is also \(U \)-small, i.e. \(\mathcal{B} \) is co-well-powered.

 Necessary and sufficient conditions for a subcategory to be co-well-powered reflective are also given in [1, Theorem 3].

\textbf{Note added in proof.} A careful examination of the proofs of the results leading to the theorem obtained above shows that the latter can be extended to a complete category \(\mathcal{C} \) with a “well-founded” bicategory structure \((E, M)\) [7, p. 355] when the epi-reflective hull \(\mathcal{B} \) of \(\mathcal{A} \) is replaced by the \(E \)-reflective hull of \(\mathcal{A} \) in \(\mathcal{C} \).

 (This transfers co-well-poweredness from compact \(T_2 \)-spaces to completely Hausdorff spaces (with continuous maps) as well as to every intermediate full subcategory.)

\textbf{References}

\textbf{Fachbereich Mathematik, Universität Bremen, D-2800 Bremen, Federal Republic of Germany}