Tales about tails
HTML articles powered by AMS MathViewer
- by Haakon Waadeland
- Proc. Amer. Math. Soc. 90 (1984), 57-64
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722415-5
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are given for a sequence $\left \{ {{g^{(n)}}} \right \}$ to be a sequence of tails of a convergent continued fraction. Some special cases are also studied.References
- T. S. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc. 104 (1962), 1–16. MR 138933, DOI 10.1090/S0002-9947-1962-0138933-7
- T. S. Chihara, Orthogonal polynomials whose zeros are dense in intervals, J. Math. Anal. Appl. 24 (1968), 362–371. MR 232029, DOI 10.1016/0022-247X(68)90037-1
- T. S. Chihara, Orthogonal polynomials whose distribution functions have finite point spectra, SIAM J. Math. Anal. 11 (1980), no. 2, 358–364. MR 559875, DOI 10.1137/0511033
- Lisa Jacobsen, Convergence acceleration for continued fractions $K(a_{n}/1)$, Trans. Amer. Math. Soc. 275 (1983), no. 1, 265–285. MR 678349, DOI 10.1090/S0002-9947-1983-0678349-1 —, A method for convergence acceleration of continued fractions $K({a_n}/1)$, Lectures Notes in Math., 932, Springer-Verlag, Berlin and New York, 1982, pp. 74-86. —, Further results on convergence acceleration for continued fraction $K({a_n}/1)$, Trans. Amer. Math. Soc. (to appear). —, Functions defined by continued fractions. M eromorphic continuation (submitted). —, Convergence of limit $k$-periodic continued fractions $K({a_n}/{b_n})$ and of subsequences of their tails (in preparation).
- Lisa Jacobsen and Haakon Waadeland, Some useful formulas involving tails of continued fractions, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 99–105 (English, with Russian summary). MR 690457
- William B. Jones and Wolfgang J. Thron, Continued fractions, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley Publishing Co., Reading, Mass., 1980. Analytic theory and applications; With a foreword by Felix E. Browder; With an introduction by Peter Henrici. MR 595864 O. Perron, Die Lehre von den Kettenbrüchen, 3. Aufl., 2. Band, Teubuer, Stuttgart, 1957. A. Pringsheim, Über die Konvergenz unendlicher Kettenbrüche, Bayer. Akad. Nat. Wiss. Kl. Sitz. Ber. 28 (1899), 295-324.
- W. J. Thron and Haakon Waadeland, Modifications of continued fractions, a survey, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 38–66. MR 690452
- W. J. Thron and Haakon Waadeland, On a certain transformation of continued fractions, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 225–240. MR 690464 H. S. Wall, Analytic theory of continued fractions, Chelsea, New York, 1967.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 57-64
- MSC: Primary 40A15; Secondary 30B70
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722415-5
- MathSciNet review: 722415