On countable compactness and sequential compactness
HTML articles powered by AMS MathViewer
- by Hao Xuan Zhou
- Proc. Amer. Math. Soc. 90 (1984), 121-127
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722428-3
- PDF | Request permission
Abstract:
If a countably compact ${T_3}$ space $X$ can be expressed as a union of less then $c$ many first countable subspaces, then MA implies that $X$ is sequentially compact. Also MA implies that every countably compact space of size $< c$ is sequentially compact. However, there is a model of ZFC in which ${\omega _1} < c$ and there is a countably compact, separable ${T_2}$ space of size ${\omega _1}$, which is not sequentially compact.References
- James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR 823775, DOI 10.1017/CBO9780511758867.002
- Murray Bell and Kenneth Kunen, On the PI character of ultrafilters, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), no. 6, 351–356. MR 642449
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- S. P. Franklin, On two questions of Moore and Mrowka, Proc. Amer. Math. Soc. 21 (1969), 597–599. MR 251696, DOI 10.1090/S0002-9939-1969-0251696-1
- Anna Kucia and Andrzej Szymański, Absolute points in $\beta N\backslash N$, Czechoslovak Math. J. 26(101) (1976), no. 3, 381–387. MR 413046 K. Kunen, Set theory, North-Holland, Amsterdam, 1977.
- Norman Levine, On compactness and sequential compactness, Proc. Amer. Math. Soc. 54 (1976), 401–402. MR 405357, DOI 10.1090/S0002-9939-1976-0405357-X
- V. I. Malyhin and B. È. Šapirovskiĭ, Martin’s axiom, and properties of topological spaces, Dokl. Akad. Nauk SSSR 213 (1973), 532–535 (Russian). MR 0343241
- A. J. Ostaszewski, Compact $\sigma$-metric Hausdorff spaces are sequential, Proc. Amer. Math. Soc. 68 (1978), no. 3, 339–343. MR 467677, DOI 10.1090/S0002-9939-1978-0467677-4
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132 Wang Guo-jun, Unpublished manuscript.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 121-127
- MSC: Primary 54D30; Secondary 03E35, 03E50, 54A35
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722428-3
- MathSciNet review: 722428