The equivalence of zero span and zero semispan
HTML articles powered by AMS MathViewer
- by James Francis Davis
- Proc. Amer. Math. Soc. 90 (1984), 133-138
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722431-3
- PDF | Request permission
Abstract:
In this paper we introduce the idea of the symmetric span of a continuum, and show that continua with zero symmetric span are in class $W$. Continua with zero span have zero symmetric span, but the converse does not hold. We also show that if every subcontinuum of the continuum $M$ is in class $W$ then the span of $M$ and the semispan of $M$ agree. These results are then applied to show that the properties of having zero span and of having zero semispan are equivalent.References
- Edwin Duda and James Kell III, Two sum theorems for semispan, Houston J. Math. 8 (1982), no. 3, 317–321. MR 684158
- J. B. Fugate, Decomposable chainable continua, Trans. Amer. Math. Soc. 123 (1966), 460–468. MR 196720, DOI 10.1090/S0002-9947-1966-0196720-1
- W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), no. 2, 99–107. MR 365516, DOI 10.4064/fm-77-2-99-107
- W. T. Ingram, Decomposable circle-like continua, Fund. Math. 63 (1968), 193–198. MR 240786, DOI 10.4064/fm-63-2-193-198 —, Atriodic tree-like continua and the span of mappings, Topology Proc. 1 (1976), 329-333.
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199–214. MR 179766, DOI 10.4064/fm-55-3-199-214
- A. Lelek, Some problems concerning curves, Colloq. Math. 23 (1971), 93–98, 176. MR 307204, DOI 10.4064/cm-23-1-93-98
- A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), no. 1, 35–45. MR 482680, DOI 10.4064/cm-37-1-35-45
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439–460. MR 10968, DOI 10.2307/2371908
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 133-138
- MSC: Primary 54F20; Secondary 54C10, 54F50, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1984-0722431-3
- MathSciNet review: 722431