THE GELFAND SUBALGEBRA OF REAL OR NONARCHIMEDEAN VALUED CONTINUOUS FUNCTIONS

JESUS M. DOMINGUEZ

Abstract. Let \(L \) be either the field of real numbers or a nonarchimedean rank-one valued field. For topological space \(T \) we study the Gelfand subalgebra \(C_\delta(T, L) \) of the algebra of all \(L \)-valued continuous functions \(C(T, L) \). The main result is that if \(T \) is a paracompact locally compact Hausdorff space, which is ultraregular if \(L \) is nonarchimedean, then for \(f \in C(T, L) \) the following statements are equivalent: (1) There exists a compact set \(K \subseteq T \) such that \(f(T - K) \) is finite, (2) \(f \) has finite range on every discrete closed subset of \(T \), and (3) \(f \in C_\delta(T, L) \).

Throughout this paper \(L \) will stand for either the valued field \(\mathbb{R} \) or a nonarchimedean rank-one valued field, and \(T \) for a Hausdorff topological space. \(T \) will be assumed completely regular in the real case and ultraregular in the nonarchimedean case.

We will denote by \(C(T, L) \), or simply by \(C \) if there is no confusion, the algebra over \(L \) consisting of all \(L \)-valued continuous functions on \(T \), and by \(C_K \) the ideal of those continuous \(f \in C \) with compact support. Let \(\mathfrak{M} \) be the set of maximal ideals of \(C \), and denote by \(C_0 \) the Gelfand subalgebra of \(C \), consisting of all \(f \in C \) with the property that, for each \(M \in \mathfrak{M} \), there exists \(\lambda \in L \) such that \((f - \lambda) \in M \). (The concept of Gelfand subalgebras of general algebras has been introduced by N. Shell —formerly N. Shilkret—in [6].) We will denote by \(C_F \) the subalgebra of \(C \) consisting of those \(f \in C \) for which there exists a compact set \(K \subseteq T \) such that \(f(T - K) \) is finite.

Proposition 1. For any \(f \in C_0 \), \(f(T) \) is compact.

Proof. First, we prove that \(f(T) \) is a precompact set.

Real case. It suffices to see that \(f \) is bounded, and this follows from [5, 5.7(b)].

Nonarchimedean case. Take \(\varepsilon > 0 \). Note that any two (closed-open) \(\varepsilon \)-radius spheres \(B(\alpha) = \{ \mu \in L \mid |\mu - \alpha| < \varepsilon \} \) are equal or disjoint. Choose an indexed set \((\alpha_i)_{i \in I} \) in \(f(T) \) such that \(B(\alpha_i)_{i \in I} \) is disjoint and covers \(f(T) \). We claim \(I \) is finite. In fact, assume, to the contrary, that \(I \) is infinite. Let \(A_I = \bigcup_{j \neq i} f^{-1}(B(\alpha_j)) \). Since the family of closed-open sets \((A_i)_{i \in I} \) has the finite intersection property, there exists \(M \in \mathfrak{M} \) such that \(A_i \subseteq Z[M] \) for any \(i \in I \). On the other hand, since \(f \in C_0 \) there exists \(\lambda \in L \) such that \((f - \lambda) \in M \) and hence \(Z(f - \lambda) \cap A_i \neq \emptyset \) for any \(i \in I \), which is a contradiction. Thus \(I \) is finite and so \(f(T) \) is precompact.
Now we will prove that \(f(T) \) is compact. Endow \(\mathbb{M} \) with the Zariski topology (also called the Stone topology) and identify any \(t \in T \) with the fixed maximal ideal \(M_t = \{ f \in C \mid f(t) = 0 \} \). Then, by virtue of the Gelfand-Kolmogoroff theorem and its ultraregular analogue (see [5, 7.3] and [1]), \(\mathbb{M} \) can be considered as the Stone-Cech compactification of \(T \) in the real case and as the Banaschewski one in the nonarchimedean case. Since \(f(T) \) is a precompact set, \(f \) can be uniquely extended to a continuous function \(f^\beta: \mathbb{M} \to L \). Since \(f \in C_0 \), for each \(M \in \mathbb{M} \) one has that \(f^\beta(M) = \lambda \) if \((f - \lambda) \in M \); hence \((f - f^\beta(M)) \in M \) and \(Z(f - f^\beta(M)) \neq \emptyset \), so for each \(M \in \mathbb{M} \) there exists \(t \in T \) such that \(f^\beta(M) = f(t) \). This shows that \(f^\beta(\mathbb{M}) \subset f(T) \), and obviously \(f(T) \subset f^\beta(\mathbb{M}) \), thus \(f(T) = f^\beta(\mathbb{M}) \) is a compact set.

Proposition 2. \(C_F \subset C_0 \).

Proof. Take \(f \in C_F \) and let \(K \) be a compact set such that \(f(T - K) = \{ \lambda_1, \ldots, \lambda_n \} \). If \(M = M_\lambda \) is a fixed maximal ideal of \(C \) then \((f - f(t)) \in M \); if \(M \) is a free maximal ideal of \(C \) then \((f - f(t)) \in C_K \subset M \), so there exists \(1 \leq i \leq n \) such that \((f - \lambda_i) \in M \). Hence \(f \in C_0 \) and so \(C_F \subset C_0 \).

Theorem. Assume that \(T \) is paracompact and locally compact. Then for \(f \in C \) the following statements are equivalent: (1) \(f \in C_F \), (2) \(f \) has finite range on every discrete closed subset of \(T \), and (3) \(f \in C_0 \).

Proof. It is evident that (1) \(\Rightarrow \) (2). From Proposition 2 it follows that (1) \(\Rightarrow \) (3). Now let \(f \in C \) and assume that \(f(T - K) \) is infinite for every compact set \(K \subset T \), which implies, in particular, that \(T \) is not compact. We claim that there exists a discrete closed subset of \(T \) in which \(f \) has infinite range and that \(C_F \subset C_0 \). Note that the theorem follows from this claim. For the proof of the claim we will distinguish two cases.

Real case. First, we will consider the case in which \(T \) is \(\sigma \)-compact (see Bourbaki [3, p. 68]). Take a sequence \((U_n)\) of relatively compact open sets such that \(U_n \subset U_{n+1} \) and \(T = \bigcup U_n \). From the assumptions on \(f \) there exists a sequence \((t_n)\), \(t_n \in U_{i_n} - \bar{U}_{i_n-1} \) for some increasing sequence \((i_n)\), such that \(f(t_n) \neq f(t_m) \) for \(n \neq m \). For convenience, we set \(V_n = U_{i_n} \). It is evident that the set \(\{ t_n \mid n \in \mathbb{N} \} \) is a discrete closed subset of \(T \) on which \(f \) has infinite range. To see that \(f \notin C_0 \) set \(K_n = V_{3n} - V_{3n-1} \), \(L_n = V_{3n-2} \). Since \(K_n \) is compact, \(L_n \) is closed, \(K_n \cap L_n = \emptyset \) and \(T \) is completely regular, there exists a continuous function \(g_n: T \to [0,1] \) such that \(g_n|_{K_n} = 0 \) and \(g_n|_{L_n} = 1 \). On the other hand, there exists another continuous function \(l_n: \mathbb{R} \to [0,1] \) such that \(f(l_n) = Z(l_n) \) and so \(Z(f - f(l_n)) \cap Z(g_n) = Z(h_n) \) where \(h_n = \sup (l_n \circ f, g_n) \). Now set \(D_k = \bigcup_{k \leq n} Z(h_n) \) and \(d_k = \inf_{k \leq n} h_n \). For any \(m \in \mathbb{N} \) there exists \(i(m) \in \mathbb{N} \) such that \(h_n|_{V_m} = 1 \) if \(n > i(m) \), so \(d_k|_{V_m} = \inf_{k \leq n<i(m)} h_n \). Hence \(d_k \subset C \) and \(Z(d_k) = D_k \). Since the family of all \(z \)-sets \(D_k \) has the finite intersection property, there exists \(M \in \mathbb{M} \) such that \(D_k \subset Z(M) \) for any \(k \in \mathbb{N} \). If \(f \in C_0 \) then \((f - \lambda) \in M \) for some \(\lambda \in \mathbb{R} \) and consequently \(Z(f - \lambda) \cap D_k \neq \emptyset \) for all \(k \), which is a contradiction. Thus \(f \notin C_0 \) and the claim is proved for \(T \sigma \)-compact.
For general T the proof is reduced to the above case if we show that T contains a compact closed-open set T' with the property that $f(T - K)$ is infinite for every compact $K \subset T'$. Since T is a paracompact locally compact Hausdorff space, T is the disjoint union of a family $(T_i)_{i \in I}$ of σ-compact open subsets of T. If some T_i has the above stated property, set $T' = T_i$. Otherwise, take a sequence (t_n) such that $t_n \in T_i$ and $f(t_n) \neq f(t_m)$ for $n \neq m$, and set $T' = \bigcup T_i$. This completes the proof of the real case.

Nonarchimedean case. From the topological assumptions on T it follows that T is the disjoint union of a family $(T_i)_{i \in I}$ of compact-open subsets of T. From the assumptions on f there exists $t_n \in T_i$, $n = 1, 2, \ldots$, such that $i_n \neq i_m$ and $f(t_n) \neq f(t_m)$ for $n \neq m$. Since the range of f is infinite over the discrete closed subset $\{t_n | n \in \mathbb{N}\}$, the proof will be completed if we show $f \not\in C_0$. Define

$$h_k(t) = \begin{cases} f(t) - f(t_n), & t \in T_i \text{ and } n \geq k, \\ 1, & \text{otherwise}. \end{cases}$$

Then h_k is continuous, and, by letting $D_k = Z(h_k)$, we may proceed as in the real case.

The hypothesis of paracompactness is not superfluous as the following example shows:

Example 1 (see [5, p. 123]). Let ω_1 be the first uncountable ordinal and let W^* be the set of all ordinals less than $\omega_1 + 1$ endowed with the interval topology. Let $T^* = W^* \times N^*$, where N^* denotes the one-point compactification $N \cup \{w\}$ of N, and let $T = T^* - \{t\}$, where $t = (\omega_1, w)$. T is a pseudocompact locally compact Hausdorff space. Since T is pseudocompact we have $C_0(T, \mathbb{R}) = C(T, \mathbb{R})$. The continuous function f defined by $(\alpha, n) \to 1/n$, $(\alpha, w) \to 0$ belongs to $C_0(T, \mathbb{R})$, but $f \not\in C_F(T, \mathbb{R})$.

The above example shows that, in general, the equality $C_K = \bigcap \{M \in \mathfrak{M} \mid M \text{ is free}\}$ does not hold (see [5, p. 123]). However, as a consequence of our theorem one has the following

Corollary. If the space T is paracompact and Hausdorff locally compact then $C_K = \bigcap \{M \in \mathfrak{M} \mid M \text{ is free}\}$.

Proof. If f lies in every free maximal ideal of C then $f \in C_0$, and according to the theorem one has $f \in C_F$. Let K be a compact subset of T such that $f(T - K) = \{\lambda_1, \ldots, \lambda_n\}$. From [5, p. 58], it follows that $Z(f - \lambda_i)$ is compact for $\lambda_i \neq 0$, $1 \leq i \leq n$. Hence $f \in C_K$.

Remark (see [2, p. 20]). The Theorem and the Corollary are also true if L is replaced by the valued field of complex numbers \mathbb{C}. This can be easily deduced from the fact that the maximal ideals of $C(T, \mathbb{R})$ are in 1-1 correspondence with the maximal ideals of $C(T, \mathbb{C})$ under the mapping $M \to M + iM$. (The inverse of this map is the map sending the maximal ideal m of $C(T, \mathbb{C})$ into re(m), where re(m) denotes the collection of real parts re(G) of functions G in m.)

Finally, we give an example in which T is not a normal space but, nevertheless, the conclusion of the Theorem is true.
Example 2 (see [5, Exercise 8L]). Let \(w_1 \) and \(W^* \) be as in Example 1. Let \(T^* = W^* \times W^* \) and \(T = T^* - \{(w_1, w_1)\} \). \(T \) is a pseudocompact locally compact Hausdorff space, \(T^* \) is the one-point compactification of \(T \) and every function in \(C(T, \mathbb{R}) \) is constant on a deleted neighbourhood of \((w_1, w_1)\). Hence, \(C(T, \mathbb{R}) = C_0(T, \mathbb{R}) = C_p(T, \mathbb{R}) \), but \(T \) is not normal.

I would like to thank the referee for his very valuable comments and suggestions.

References

Departamento de Algebra y Fundamentos, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain.