COMMUTATIVE FPF RINGS ARISING AS
SPLIT-NUL EXTENSIONS

CARL FAITH

Abstract. Let $R = (B, E)$ be the split-null or trivial extension of a faithful module E over a commutative ring B. R is an FPF ring if the partial quotient ring BS^{-1} with respect to the set S of elements of B with zero annihilator in E is canonically the endomorphism ring of E, that is $BS^{-1} = \text{End}_BE^{-1}$, every finitely generated ideal with zero annihilator in E is invertible in BS^{-1}, and $E = ES^{-1}$ is an injective module over B. The proof uses the author's characterization of commutative FPF rings [1] and also the characterization of self-injectivity of a split-null extension [3].

Background. A ring R is (right) [F]PF if every [finitely generated] faithful right R-module generates the category mod-R of all right R-modules. A module M is (Beachy-Blair) cofaithful if there is an embedding $R \rightarrow M^n$ for some finite integer n. Over a commutative ring R, every finitely generated faithful module is manifestly cofaithful (= CF-faithful in [4]). Furthermore, any cofaithful module over a right self-injective ring R generates mod-R, since then R splits in any over module, hence $M^n \cong R \oplus X$ in mod-R for some $n > 0$. This shows that any commutative self-injective ring R is FPF. Moreover, a commutative FPF ring R is characterized in [1] by the two conditions:

(FPF 1) R is quotient-injective, i.e. the (classical) quotient ring $Q_e(R)$ is injective.
(FPF 2) R is pre-FPF, i.e. finitely generated faithful ideals are generators of mod-R (equivalently, are finitely generated projective [1, 2]).

Since any commutative self-injective ring is FPF, it is thereby pre-FPF, that is, (FPF$_1$)\Rightarrow(FPF$_2$) for injective R: in fact, then R is the only finitely generated faithful ideal.

In [3] we considered the split-null (or trivial) extension $R = (B, E)$ of a faithful B-bimodule E over a ring B, and characterized the conditions under which (B, E) is right PF (resp. right self-injective). We say that E is left strongly balanced [3] if B is canonically isomorphic to the endomorphism ring of the right B-module E; notation: $B = \text{End}_BE$. Theorem 2 of [3] states

(IN 1) (B, E) is right self-injective iff E is a left strongly balanced injective right B-module.
(IN 2) (B, E) is right PF iff E is a left strongly balanced injective right cogenerator over B.

Henceforth let B be a commutative ring, and let E be a faithful B-module. Then $R = (B, E)$ is commutative, and our main theorem characterizes when R is FPF. To
describe the result, let S denote the multiplicative set of B consisting of all $b \in B$ such that $\ker b = 0$, i.e., $b : E \to E$ is monic. Then, S is a subset of the set B^* of regular elements of B, hence the quotient ring $Q = BS^{-1}$ embeds in $Q = Q_c(B)$ canonically.

1. **Proposition and Definition.** An ideal I of B is said to invert or is invertible in a commutative overring Q provided the equivalent conditions hold:

 (a) $I/I' = B$ for $I' = (I:B) = \{ q \in Q | qI \subseteq B \}$.

 (b) $\sum_{i=1}^n q_i b_i = B$ for finitely many elements $q_1, \ldots, q_n \in Q$.

 (c) There exist elements $q_i, \ldots, q_n \in Q$, and $b_i, \ldots, b_n \in I$ so that $q_i b_i \in B$, $i = 1, \ldots, n$, and $\sum_{i=1}^n q_i b_i = 1$.

 (d) I is a faithful ideal of B, and there exist $q_1, \ldots, q_n \in Q$, $b_1, \ldots, b_n \in I$ so that $q_i b_i \in B$, $i = 1, \ldots, n$, and $x = \sum_{i=1}^n b_i q_i(x) \forall x \in I$.

 (e) I is a finitely generated faithful projective B-module, and if $f \in \text{Hom}_B(I,B)$, then $f = q_i$ for some $q \in Q$, where $q_i(x) = qx \forall x \in B$.

 (f) I generates $\text{mod}-B$ and if $f \in \text{Hom}_B(I,B)$, then $f = q_i$ for some $q \in Q$.

 Proof. (a) \iff (b) \iff (c) \iff (d) is direct, and (d) \iff (e) uses the dual basis lemma. It can be shown that b_1, \ldots, b_n generates I, that $(q_1)_s, \ldots, (q_n)_s$ generates $\text{Hom}_B(I,B)$, and if $f \in \text{Hom}_B(I,B)$, then there exists $c_i \in B$, $i = 1, \ldots, n$, so that

 $$f = \sum_{i=1}^n (q_i)_s c_i = \left(\sum_{i=1}^n q_i c_i \right)_s.$$

 (Necessarily, $c_i = f(b_i)$, $i = 1, \ldots, n$.)

 We say that an ideal I acts faithfully on E if the annihilator $r_E I$ of I in E is zero. Since E is faithful, then $B \to \text{End}_E B$ canonically, so an ideal I acts faithfully iff \(\bigcap_{b \in I} \ker b = 0 \) (i.e. when each $b \in B$ is considered as an endomorphism of E). In this case we say I has zero kernel in E. This implies that I is a faithful ideal of B inasmuch as $Ic = 0$ for some $c \in B$ implies $IcE = 0$, and then

 $$r_E I = 0 \Rightarrow cE = 0 \Rightarrow c = 0.$$

2. **FPF Theorem for Split-Null Extensions.** Let E be a faithful B-module. Then, $R = (B,E)$ is an FPF ring iff the following three conditions hold:

 (2.1) E is injective,

 (2.2) $BS^{-1} \cong \text{End}_B E$ canonically, where $S = \{ b \in B | ker b = 0 \}$,

 (2.3) Every finitely generated ideal of B with zero kernel in E is invertible in BS^{-1}.

 When this is so, then $Q_c(R) = (BS^{-1},E)$, is self-injective, and I is a projective ideal of B.

3. **Corollary.** If E is a strongly balanced injective module over B, then every finitely generated ideal of B acting faithfully on E is projective, so B is pre-FPF.

4. **Corollary.** If there exists a strongly balanced injective torsion free module E over a domain B, then B is FPF, hence Prufer.

 Comments. Corollary 3 follows from the theorem, and the characterization in (IN 1) of injective (B,E). Moreover, in Corollary 4, every finitely generated ideal
$I \neq 0$ acts faithfully on E, hence is projective by the theorem, so B is pre-FPF. Since pre-FPF \Rightarrow FPF \Leftrightarrow Prüfer in a domain (see [2]), Corollary 4 follows.

Preliminaries.

Proof of Theorem 2. We first compute $Q_c(R)$. Let $(b,x) = (\frac{b}{x}b)$ denote a typical element of
\[
R = (B,E) = \left\{ \left(\begin{array}{c} b \\ x \\ b \end{array} \right) \in \left(\begin{array}{c} BE \\ OB \end{array} \right) \left| b \in B, x \in E \right. \right\}.
\]
If also $(c,y) \in R$, then
\[
(1) \quad (b,x)(c,y) = (bc, cx + by)
\]
so (b,x) is regular in R iff
\[
\ker b = \{ y \in E | by = 0 \} = 0.
\]
This follows since if $by = 0$ and $y \neq 0$, then $(b,x)(0,y) = (0,by) = 0$, so (b,x) is not regular in R. Conversely, if we put (1) to 0, and $(c,y) \neq 0$, then $bc = 0$, so E faithful implies $cE \neq 0$, and $0 \neq cE \subseteq \ker b$.

It follows that $S = (b \in B | \ker b = 0)$ is a multiplicative subset of B^*, so $Q = BS^{-1} \subseteq Q_c$. Furthermore,
\[
(2) \quad Q_c(R) \subseteq (Q, Q \otimes_B E) = (BS^{-1}, ES^{-1})
\]
since if $(b,x) \in R^*$, then
\[
(b,x)^{-1} = (b^{-1}, -b^{-1}x) \in (BS^{-1}, ES^{-1}) = (Q, Q \otimes_B E)
\]
where $b^{-1}x$ is identified with $b^{-1} \otimes x \in Q \otimes_B E$. Moreover, every
\[
q = (ab^{-1}, t^{-1}y) \in (BS^{-1}, ES^{-1})
\]
has the form
\[
q = (ab^{-1}, by)(b^{-1}t^{-1}, 0) \in BS^{-1}
\]
that is, $q \in Q_c(R)$, proving the inclusion (2) is an equality.

An ideal K of R has the form $K = (K_B, K_E)$, for an ideal $K_B \subseteq B$ and a B-submodule K_E of E such that $K_B E \subseteq K_E$. Since $(b,x)(c,y) = (bc, by + cx)$ $\forall b \in B, x, y \in E$, then K is faithful in R iff K_B acts faithfully on E.

An ideal K of R generated by $\langle (a_\lambda, x_\lambda) \rangle_{\lambda \in \Lambda}$ has the form
\[
(5.1) \quad K = (K_B, K_E) = \sum_{\lambda \in \Lambda} (a_\lambda, x_\lambda) R = \left(\sum_{\lambda \in \Lambda} a_\lambda B, \sum_{\lambda \in \Lambda} a_\lambda E + \sum_{\lambda \in \Lambda} Bx_\lambda \right)
\]
\[
= (K_B, K_B E + \sum_{\lambda \in \Lambda} Bx_\lambda) = (K_B, K_B E + K_E).
\]

5.2. Proposition. An ideal K (generated as in (5.1)) inverts in $Q_c(R) = (BS^{-1}, ES^{-1})$
iff K_B inverts in BS^{-1} and $x_\lambda \in K_B E$ for all $\lambda \in \Lambda$. In other words, K is invertible in R iff K_B is invertible in BS^{-1} and $K = (K_B, K_B E)$.
Proof. K inverts in (BS^{-1}, ES^{-1}) iff there exist elements $q_1, \ldots, q_m \in BS^{-1}$ and $y_1, \ldots, y_m \in E$, $m < \infty$, such that $\sum_{i=1}^{m} K(q_i, y_i) = R$, equivalently
\[
\sum_{i=1}^{m} q_i K_B = B
\]
and
\[
E = \sum_{i=1}^{m} y_i K_B + \sum_{i=1}^{m} q_i K_E.
\]
Furthermore, (3) holds iff
\[
K_B \text{ inverts in } BS^{-1} \text{ and } K_B^{-1} = \sum_{i=1}^{m} q_i B.
\]
When (5) holds, then (4) is equivalent to
\[
E = \sum_{i=1}^{m} y_i K_B + K_B^{-1} K_E.
\]
Now by (5.1) (which is a straightforward computation), we have
\[
K_E = K_B E + \sum_{\lambda \in \Lambda} Bx_{\lambda}
\]
and so (6) is equivalent to
\[
E \supseteq \sum_{\lambda \in \Lambda} K_B^{-1} x_{\lambda}
\]
or
\[
x_{\lambda} \in K_B E \quad \forall \lambda \in \Lambda.
\]
Then, by (5.1), $K = (K_B, K_B E)$.

6. Corollary. If $E = Es$ for all $s \in S$, then K inverts in $Q_c(R)$ iff K_B inverts in BS^{-1}.

Proof. The necessity follows from the proposition. Conversely, if K_B inverts in BS^{-1}, then K_B contains an element $s \in S$, so then $E = Es$ implies that $E = K_B E$ and so the criterion of the proposition applies.

We can now complete the proof of Theorem 2.

Necessity. If $R = (B, E)$ is FPF, then by (FPF 1), $Q_c(R) = (BS^{-1}, ES^{-1})$ is self-injective. By (IN 1), then ES^{-1} is a strongly balanced injective BS^{-1}-module. By [1], R is integrally closed in $Q_c(R)$, hence contains all nilpotents of (BS^{-1}, ES^{-1}), so $R \supseteq (0, ES^{-1})$, that is,
\[
E = ES^{-1}.
\]
Since E is thereby injective over BS^{-1}, then (2.1) holds via flatness of BS^{-1} over B. Since ES^{-1} is strongly balanced over BS^{-1}, then (2.2) holds.

Finally, if $I = \sum_{i=1}^{n} b_i B$ acts faithfully on E, and $F = \sum_{i=1}^{n} b_i E$, then
\[
K = (I, F) = \sum_{i=1}^{n} (b_i, 0) R
\]
is a finitely generated ideal of \(R \) and faithful, so \(R \) is FPF implies via Proposition 1 that \(K \) inverts in \(Q_c(R) \), hence \(I = K_B \) inverts in \(BS^{-1} \) by Proposition 5. This yields (2.3).

Sufficiency. (2.1) implies that \(E \) is divisible, hence \(E \) is canonically a \(BS^{-1} \)-module. Since \(BS^{-1} \) is a ring epic of \(B \), then \(E \) is also injective over \(BS^{-1} \). Now (2.2) evidently implies \(BS^{-1} = \text{End}_{BS^{-1}} E \) canonically, so \(Q_c(R) = (BS^{-1}, ES^{-1}) \) is self-injective by (IN 1), so \(R \) is (FPF 1).

It remains to show that \(R \) is (FPF 2). Let \(K = (K_B, K_E) \) be a finitely generated faithful ideal of \(R \). Then \(K_B \) acts faithfully on \(E \), as shown supra Proposition 5. Since \(K_B \) is finitely generated in \(B \), then \(K_B \) is invertible by (2.3), so \(K \) is invertible by Corollary 6.

Acknowledgement. I wish to acknowledge the referee for suggestions that improved the exposition.

Problems. 1. Characterize when \(R = (B, E) \) is FPF for a general faithful bimodule \(E \) over a noncommutative ring. Unfortunately, arbitrary noncommutative FPF rings have yet to be characterized, although the list of characterized FPF rings includes (1) semiprime, (2) prime, (3) self-injective, (4) Noetherian semiprime, (5) semiperfect Noetherian etc. (see [6]).

2. Characterize \(FP^2 \) split-null extensions. Even for commutative \(R \) this is open, essentially since commutative \(FP^2 \) rings have not been characterized: Here is a "working" conjecture: A commutative ring \(R \) is \(FP^2 \) iff \(R \) is pre-\(FP^2 \) (i.e. finitely presented faithful ideals are projective) and \(Q_c(R) \) is \(FP \)-injective. The sufficiency of these conditions follows as in the proof of the corresponding conditions (FPF 1 and 2) in [1]. (Hint: an \(FP \)-injective ring splits in any finitely-presented over-module.)

3. If \(B = \text{End}_B E \) and \(E \) is injective over \(B \), is \(B \) necessarily FPF? The answer is yes when \(B \) is of Noetherian domain, since then the problem may be reduced to the case where \(E \) is indecomposable, hence then \(B = \text{End}_B E \) is the ring of \(p \)-adics (where \(P \) is the prime in \(\text{Ass} E \); see [3] and [5], Chapter 11). Thus, in this case \(B \) is a discrete valuation domain hence a PID, so a fortiori FPF.

References

Department of Mathematics, Rutgers University, Hill Center for the Mathematical Sciences, Busch Campus, New Brunswick, New Jersey 08903