MORITA EQUIVALENCE AND INFINITE MATRIX RINGS

VICTOR CAMILLO

Abstract. This paper contains the proof of a theorem conjectured by William Stephenson in his thesis [3].

Two rings R and S are Morita equivalent if their categories of right R modules are isomorphic. A standard example of two Morita equivalent rings are R and R_n, the $n \times n$ matrices over R. It is therefore true that if R_n and S_m are isomorphic for integers n and m then R and S are Morita equivalent. An easy example (below) shows that there are Morita equivalent rings R and S with R_n and S_m not isomorphic for any integers m and n. This means that category isomorphism cannot be reduced to a ring isomorphism in this way. Regard R_n as $\text{End } R^n$, where R^n is a direct sum of n copies of R. Let $R^{(N)}$ be a direct sum of countably many copies of R. It follows from a result of Eilenberg (below) that if R and S are Morita equivalent, then $\text{End } R^{(N)} \approx \text{End } S^{(N)}$.

We prove the following

Theorem. R and S are Morita equivalent if and only if $\text{End } R^{(N)} \approx \text{End } S^{(N)}$, where N is a countably infinite set.

Note $\text{End } R^{(N)} = R_N$ is just the ring of column finite matrices over R.

The following example was suggested by Kent Fuller. I would also like to thank him for several helpful conversations.

Example. Two Morita equivalent rings R and S with R_n not isomorphic to S_m for any integers n and m.

Let K be any field, $R \approx K \times K$ and $S \approx K \times K_2$. Then $R_n \approx K_n \times K_n$ and $S_m \approx K_m \times K_{2m}$. By the uniqueness part of the Wedderburn theorem, the latter two rings cannot be isomorphic, but R and S are clearly Morita equivalent.

Our result is motivated by, and requires, a result of Eilenberg. This is an exercise in Anderson and Fuller [1, p. 202]. Let R be a ring. Recall that P is a progenerator if P is a finitely generated projective generator, that is, $R^{(n)} \approx P \oplus K$ and $P^{(m)} \approx R \oplus L$ for modules K and L, and integers m and n.

Notation. $X^{(N)}$ always denotes the direct sum of a countable number of copies of X.

For completeness we sketch a proof of the following

Proposition (Eilenberg). If P is a progenerator, $P^{(N)} \approx R^{(N)}$.

We use the notation preceding the proposition, and note that without loss of generality $n = m$. Only one substitution is made on each line.
We have
\[P^{(N)} \approx R^{(N)} \oplus L^{(N)} \approx R^{(N)} \oplus R^{(N)} \oplus L^{(N)} \approx R^{(N)} \oplus P^{(N)}. \]
Similarly, \(R^{(N)} \approx P^{(N)} \oplus R^{(N)} \), and we are done.

To obtain our results we will need an observation about projective modules. If \(X \) is any module and \(\{Y_i\} \) is an infinite set of modules, then \(G = \text{Hom}(X, \sum \oplus Y_i) \) may clearly be described as the subgroup of \(\prod \text{Hom}(X, Y_i) \) with the property that \(f = (f_1, \ldots, f_n, \ldots) \) is in \(G \) if and only if for every \(x \in X, f_i(x) = 0 \) for all but finitely many \(i \). We thus have a canonical embedding
\[c: \sum \oplus \text{Hom}(X, Y_i) \rightarrow \text{Hom}(X, \sum \oplus Y_i). \]
If \(X \) is finitely generated then \(c \) is obviously an isomorphism. For projective modules we observe:

Lemma 1. Let \(P_R \) be a projective module. Then \(P_R \) is finitely generated if and only if the \(c \) obtained from the map above by letting \(X = P \) and \(Y_i = P \) is an isomorphism.

Proof. Recall that \(A \) is projective if and only if \(A \) has a dual basis, i.e., a set \(\{(p_i, f_i)\} \) where \(p_i \in P \) and \(f_i \in \text{Hom}(P, R) \), such that for a given \(p \in P \):

1. \(f_i(p) = 0 \) for almost all \(i \)
2. \(p = \sum p_i f_i(p) \).

Now if \(c \) is an isomorphism, the map \(g: P \rightarrow P^{(N)} \) given by \(g(p) = (p_1 f_1(p), \ldots, p_n f_n(p), \ldots) \) must be identically zero from some point on, so clearly \(P \) is finitely generated. As observed in the remark preceding the lemma, the converse is obvious.

Before we prove our theorem we recall the Morita theorem.

Morita Theorem. Let \(R \) and \(S \) be rings. Then \(R \) and \(S \) have isomorphic categories of right modules if and only if there is a finitely generated projective generator \(P_R \) such that \(S = \text{End} P_R \). The category isomorphism is given by \(X_R \rightarrow \text{Hom}(P_R, X_R) \).

The functor \(\text{Hom}(P_R, -) \) does the usual on maps.

Before we prove our theorem, let us take a look at Eilenberg’s proposition. If we take the endomorphism ring of both sides of the isomorphism in the proposition, we obtain \(R_N \approx S_N \), where \(S = \text{End} P \). Note, \(\text{End} X^{(N)} \approx (\text{End} X)_N \) in general only when \(X \) is finitely generated. Thus, by Morita’s theorem, if \(R \) and \(S \) are Morita equivalent, \(R_N \approx S_N \). This was the motivation for our theorem. What we need to do is, given an isomorphism between the column finite matrices, pick out a progenerator that works.

Proof of The Theorem. Notation: \(U = R^{(N)} = \sum \oplus u_i R; V = S^{(N)} = \sum \oplus v_i S; \{e_{ij}\} \) are the usual matrix units for \(U \), i.e., \(e_{ij}(u_j) = u_i \) and \(e_{ij}(u_k) = 0 \) if \(k \neq j \). \(\{f_{ij}\} \) are the corresponding matrix units for \(V \). Note that in this case, \(\Sigma e_{ii} \) and \(\Sigma f_{ii} \) makes not sense. Finally, \(\sigma \) is an isomorphism from \(R_N \) to \(S_N \).

To establish our result we need to find a \(S \) progenerator \(P \) with \(R = \text{End} P \). There is an obvious candidate; \(\sigma(e_{11}) \) is an idempotent in \(\text{End} V \), therefore \(V = \sigma(e_{11}) V \oplus C \), where \(C \) is a complement. \(\sigma(e_{11}) V \), being a summand of a free module, is projective, but not obviously finitely generated nor a generator. We prove this.
\(\sigma(e_{11})V \) is finitely generated. We first note that \(\sigma(e_{ii})V \approx \sigma(e_{11})V \) for all \(i \). This is just a standard calculation with matrix units. Let \(h_{ij} = \sigma(f_{ij}) \);

\[
h_{ii}V \supset h_{i1}h_{11}V = h_{11}V \supset h_{1i}h_{ij}V = h_{ii}V,
\]

so \(h_{ii}V = h_{ij}V \). So, \(h_{ij}(h_{ii}V) \subset h_{jj}V \) and \(h_{ij}(h_{jj}V) \supset h_{ii}V \), and the composition of the two maps given by \(e_{ii} \) and \(e_{ij} \) is the identity on \(e_{ii}V \).

We therefore have that \(\sigma(e_{11})V \approx \sigma(e_{ii})V \) for all \(i \), and note that \(\sum \sigma(e_{ii})V \) is direct. Now, if \(\sigma(e_{11})V \) is not finitely generated, we may construct a map \(h: \sigma(e_{11})V \to \sum \sigma(e_{ii})V \) as in the lemma, using a dual basis for \(\sigma(e_{11})V \). \(h \) has the property that \(\text{Im } h \) is not contained in any finite sum of the \(\sigma(e_{ii})V \). Now, since \(\sigma(e_{11})V \) is a summand for \(V \) we can extend the domain of \(h \) to all of \(V \) by making it zero on the complement, which we still call \(h \).

Now, go back to \(U \), and look at \(\sigma^{-1}(h)e_{11} \). We know that \(\sigma^{-1}(h)e_{11}u_i = 0 \) for \(i \neq 1 \), so \(\sigma^{-1}(h)e_{11}U = (\sigma^{-1}(h)e_{11}u_1)R \), and this latter module is principal, therefore it is contained in a finite sum \(\sum_{i=1}^K u_i R \). Therefore, \(e_{11}\sigma^{-1}(h)e_{11} = 0 \) for all \(i > K \), so \(\sigma(e_{ii})\sigma(\sigma^{-1}(h))\sigma(e_{11}) = 0 \) for all \(i > k \), i.e., \(\sigma(e_{ii})\sigma(e_{11}) = 0 \) for all \(i > K \), a contradiction, which shows that \(\sigma(e_{11})V \) is finitely generated.

\(\sigma(e_{11})V \) is a generator. Look at \(\sigma^{-1}(f_{11}) \). By the previous argument, \(\sigma^{-1}(f_{11})U \) is finitely generated, and so is contained in a finite sum of the \(u_i R \). Thus there is a \(K \) with

\[
(e_{11} + \cdots + e_{KK})\sigma^{-1}(f_{11}) = \sigma^{-1}(f_{11}).
\]

So, applying \(\sigma \), we have \(\sigma(e_{11}) + \cdots + \sigma(e_{KK})f_{11} = f_{11} \). Multiply on the left to get

\[
[f_{11}\sigma(e_{11}) + \cdots + f_{11}\sigma(e_{KK})]f_{11} = f_{11}.
\]

Now evaluate at \(v_1 \) to get

\[
(1) \quad [f_{11}\sigma(e_{11}) + \cdots + f_{11}\sigma(e_{KK})]v_1 = v_1.
\]

Now let \(G = \sigma(e_{11})V \oplus \cdots \oplus \sigma(e_{KK})V \) (external direct sum), and consider the map:

\[
f: G \to v_1S \text{ given by } \quad (\sigma(e_{11})v_1, \ldots, \sigma(e_{KK})v_K) \to f_{11}(\sigma(e_{11})v_1 + \cdots + \sigma(e_{KK})v_K).
\]

Then (1) shows that \(f \) is an epimorphism. Since \(v_1S \approx S \), \(f \) splits, and since \(\sigma(e_{11})V \approx \sigma(e_{11})V \), we have \([\sigma(e_{11})V]^\times \approx S \oplus C \), so \(\sigma(e_{11})V \) is a generator.

End \(\sigma(e_{11})V \approx R \). Let \(M \) be any module and \(M = N \oplus C \). Let \(e \) be the projection onto \(M \) along \(C \). Then it is well known and easy to prove that \(\text{End } N \approx e(\text{End } M)e \), so since \(V = \sigma(e_{11})(V) \oplus C \), \(\text{End } \sigma(e_{11})V = \text{End } \sigma(e_{11})(\text{End } V)\sigma(e_{11}) \). Apply \(\sigma^{-1} \):

\[
\text{End } \sigma(e_{11})V \approx e_{11}\sigma^{-1}(\text{End } V)e_{11} = e_{11}R Ne_{11} \approx R.
\]

REFERENCES

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242