ON THE NUMBER OF LOCALLY BOUNDED FIELD TOPOLOGIES

JO-ANN D. COHEN

Abstract. Kiltinen has proven that there exist $2^{|F|}$ first countable, locally bounded field topologies (the maximum number possible) on a field F of infinite transcendence degree over its prime subfield. We consider those fields F of countable transcendence degree over its prime subfield E. In particular it is shown that if the characteristic of F is zero and the transcendence degree of F over E is nonzero or if F is a field of prime characteristic and the transcendence degree of F over E is greater than one, then there exist $2^{|F|}$ normable, locally bounded field topologies on F.

1. Introduction and basic definitions. Let R be a ring and let \mathcal{T} be a ring topology on R, that is, \mathcal{T} is a topology on R making $(x, y) \rightarrow x - y$ and $(x, y) \rightarrow xy$ continuous from $R \times R$ to R. A subset A of R is bounded for \mathcal{T} if given any neighborhood U of zero, there exists a neighborhood V of zero such that $(VA) \cup (AV) \subseteq U$. \mathcal{T} is a locally bounded topology on R if there exists a fundamental system of neighborhoods of zero for \mathcal{T} consisting of bounded sets.

We recall that a norm N on a ring R is a function from R into the nonnegative reals satisfying $N(x) = 0$ if and only if $x = 0$, $N(x - y) \leq N(x) + N(y)$ and $N(xy) \leq N(x)N(y)$ for all x and y in R. If N is a norm on R, then $\{B_\varepsilon : \varepsilon > 0\}$ is a fundamental system of neighborhoods of zero for a Hausdorff, locally bounded topology \mathcal{T}_N on R where for each $\varepsilon > 0$, $B_\varepsilon = \{r \in R : N(r) < \varepsilon\}$. Two norms on R are equivalent if they define the same topology on R.

If N is a nontrivial norm on a field F, that is, \mathcal{T}_N is nondiscrete, then a subset A of F is bounded for \mathcal{T}_N if and only if A is bounded in norm. Furthermore, if N is a nontrivial norm on F, then \mathcal{T}_N is a field topology on F, that is, \mathcal{T}_N is a ring topology on F and the mapping $x \rightarrow x^{-1}$ from F^* to F^* is continuous as well. (The proof of this assertion is the same as that for normed algebras found on p. 75 of [1].) We shall make use of the following theorem proved by Cohn in [3, Theorem 6.1]: If \mathcal{T} is a Hausdorff locally bounded ring topology on a field F and if there exists a nonzero element c in F such that $\lim_{n \rightarrow \infty} c^t = 0$, then \mathcal{T} is normable. Hence by the previous remarks, \mathcal{T} is a Hausdorff, first countable, locally bounded field topology on F.

If F is any field, then there exist at most $2^{|F|}$ locally bounded ring topologies on F [6, Theorems 5 and 6]. In [5, proof of Theorem 2.1], Kiltinen proved that if F is a field of infinite transcendence degree over its prime subfield, then there exist $2^{|F|}$ first countable, locally bounded field topologies on F, the maximum number possible.
The problem of determining the number of first countable locally bounded field topologies on a field F of finite transcendence degree over its prime subfield was first raised by Kiltinen in [5, p. 35] and again by Wieslaw in [9, p. 175]. In this paper we consider those fields F of countable transcendence degree over its prime subfield E. In particular it is shown that if the characteristic of F is zero and the transcendence degree of F over E is nonzero or if F is a field of prime characteristic and the transcendence degree of F over E is greater than one, then there exist $2^{|F|}$ normable, locally bounded field topologies on F.

2. Locally bounded field topologies.

Lemma 1. Let X be a set of cardinality \aleph_0. Then there exists a collection \mathcal{A} of subsets of X satisfying:

1. $|\mathcal{A}| = 2^{\aleph_0}$,
2. If $E \in \mathcal{A}$, then $|E| = \aleph_0$,
3. If E_1 and E_2 are distinct elements of \mathcal{A}, then $|E_1 \setminus E_2| = \aleph_0$ and $|E_2 \setminus E_1| = \aleph_0$.

Proof. We may assume that X is the set of rational numbers. For each irrational number y, let $\langle r_i \rangle_{i=1}^{\infty}$ be a sequence of rational numbers converging to y in the usual topology on the reals and let $E_y = \{r_i: i = 1, 2, \ldots\}$. If $y \neq z$, then $E_y \cap E_z$ is finite. Hence the set \mathcal{A}, defined by $\mathcal{A} = \{E_y: y \text{ irrational}\}$, satisfies properties 1–3.

(The author is grateful to Richard Hodel for simplifying her proof of Lemma 1.)

Let F be an infinite field and let $\langle F_n \rangle_{n=0}^{\infty}$ be a sequence of subrings of F. $\langle F_n \rangle_{n=0}^{\infty}$ is a *decomposition* of F if $1 \in F_0$, F_n is properly contained in F_{n+1} for all $n \geq 0$ and $F = \bigcup_{n=0}^{\infty} F_n$. Let \mathcal{G} be a collection of decompositions of F. Define \sim on \mathcal{G} by $\langle F_n \rangle_{n=0}^{\infty} \sim \langle G_n \rangle_{n=0}^{\infty}$ if for each countable subset A of F, $A \subseteq F_N$ for some $N \geq 0$ if and only if $A \subseteq G_M$ for some $M \geq 0$. Clearly, \sim is an equivalence relation on \mathcal{G}.

Lemma 2. Let F be a field and let E be its prime subfield. If the characteristic of F is zero or if the transcendence degree of F over E is nonzero, then there exists a collection \mathcal{G} of pairwise inequivalent decompositions of F such that $|\mathcal{G}| = 2^{\aleph_0}$.

Proof. Suppose the transcendence degree of F over E is nonzero. Then there exists a subfield E_0 of F and a transcendental element x over E_0 such that F is an algebraic extension of $E_0(x)$. Let p_1, p_2, \ldots be a sequence of pairwise nonassociate, irreducible elements of $E_0[x]$ and for each $i \geq 1$, let δ_{p_i} be an extension of the p_i–adic valuation from $E_0(x)$ to F. Let $A = \{p_{A,0}, p_{A,1}, \ldots\}$ be any countably infinite subset of $\{p_1, p_2, \ldots\}$. For each $n \geq 0$, let $F_{A,n} = \{a \in F: \delta_{p_{A,n}}(a) \geq 0 \text{ for all } i \geq n\}$. Clearly, $1 \in F_{A,0}$, $F_{A,n}$ is a subring of F for all $n \geq 0$ and $F_{A,n}$ is properly contained in $F_{A,n+1}$ for all $n \geq 0$ as $p_{A,n} \in F_{A,n+1} \setminus F_n$. Moreover, $F = \bigcup_{n=0}^{\infty} F_{A,n}$. So $\langle F_{A,n} \rangle_{n=0}^{\infty}$ is a decomposition of F. Let \mathcal{G} be a collection of subsets of $\{p_1, p_2, \ldots\}$ satisfying properties 1–3 of Lemma 1. If A and B are distinct elements of \mathcal{G} and $A \setminus B = \{q_i: i = 1, 2, \ldots\}$, then $\{q_i^{-1}: i = 1, 2, \ldots\} \subseteq F_{B,0}$ but $\{q_i^{-1}: i = 1, 2, \ldots\}$ is not contained in $F_{A,n}$ for any $n \geq 0$. Thus $\langle F_{A,n} \rangle_{n=0}^{\infty}$ and $\langle F_{B,n} \rangle_{n=0}^{\infty}$ are inequivalent decompositions of F.
If the transcendence degree of F over E is zero, then F is a field of characteristic zero. Let p_1, p_2, \ldots be a sequence of distinct, positive primes in \mathbb{Z} and proceed as above.

Let F be an infinite field, let $\langle F_n \rangle_{n=0}^\infty$ be a decomposition of F and let x be a transcendental element over F. We may identify $F(x)$ with a subfield of the field of formal power series $F((x))$ over F. Define $\phi: F \to \mathbb{N} \cup \{0\}$ by $\phi(a)$ is the smallest nonnegative integer n such that $a \in F_n$. Define $|\cdot|: F \to \mathbb{N} \cup \{0\}$ by

$$
|a| = \begin{cases} 2^{\phi(a)} & \text{if } a \neq 0, \\ 0 & \text{if } a = 0.
\end{cases}
$$

Let $D = \{\sum a_i x^i \in F((x)) : \lim_{i \to \infty} |a_i| 2^{-i} = 0\}$ and for each $\sum a_i x^i$ in D, let $N(\sum a_i x^i) = \sup_{i} |a_i| 2^{-i}$. Then D is a subfield of $F((x))$, N is a norm on D and D is the completion of $F(x)$ for the N-topology [2, Lemmas 2 and 3].

Lemma 3. Let x be a transcendental element over an infinite field F. If $\langle F_{1,n} \rangle_{n=0}^\infty$ and $\langle F_{2,n} \rangle_{n=0}^\infty$ are inequivalent decompositions of F, then there exist distinct, nondiscrete, normable locally bounded field topologies T_1 and T_2 on $F(x)$ corresponding to $\langle F_{1,n} \rangle_{n=0}^\infty$ and $\langle F_{2,n} \rangle_{n=0}^\infty$ respectively.

Proof. By the above remarks, there exist norms N_1 and N_2 on $F(x)$ corresponding to the decompositions $\langle F_{1,n} \rangle_{n=0}^\infty$ and $\langle F_{2,n} \rangle_{n=0}^\infty$, respectively. Let A be a subset of F such that $A \subseteq F_{1,n}$ for some $n > 0$ but $A \nsubseteq F_{2,m}$ for any $m > 0$. Then A is bounded in norm for N_1 but not for N_2. Consequently, the topologies defined on $F(x)$ by N_1 and N_2 are distinct.

Theorem 1. Let F be a field of characteristic zero, let E be its prime subfield and let \mathfrak{B} be a transcendence base for F over E.

1. If $|\mathfrak{B}| = \phi$ and $[F: E] < \infty$, then there exist 2^{\aleph_0} first countable, locally bounded field topologies on F. Moreover each nondiscrete, Hausdorff, locally bounded field topology on F is normable and hence is first countable.

2. If $|\mathfrak{B}|$ is countable and nonzero, then there exist 2^{\aleph_0} normable, locally bounded field topologies on F.

Proof. 1 follows from Theorems 1.8 and 3.3 of [7]. We may therefore assume that $|\mathfrak{B}|$ is nonzero and countable. Thus $|F| = 2^{\aleph_0}$ and so there exist at most 2^{\aleph_0} locally bounded ring topologies on F. Moreover, there exists a subfield E_0 of F and a transcendental element x over E_0 such that F is an algebraic extension of $E_0(x)$. By Lemmas 2 and 3, there exist 2^{\aleph_0} distinct, normable topologies on $E_0(x)$. By [8, Theorem 1.6], each locally bounded ring topology on $E_0(x)$ extends to a locally bounded ring topology on F. But if \mathfrak{T} is a locally bounded ring topology on F whose restriction to $E_0(x)$ is defined by a nontrivial norm, then there exists a nonzero element c in $E_0(x)$ such that $c^n \to 0$ for \mathfrak{T}. Thus by Cohn’s Theorem [3, Theorem 6.1], \mathfrak{T} is normable and hence \mathfrak{T} is a locally bounded field topology on F.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 2. Let F be a field of prime characteristic, let E be its prime subfield and let \mathfrak{B} be a transcendence base for F over E.

1. If $|\mathfrak{B}| = \phi$, then there exist two first countable, locally bounded field topologies on F.

2. If $|\mathfrak{B}| = 1$ and $[F: E(\mathfrak{B})] < \infty$, then there exist \aleph_0 first countable, locally bounded field topologies on F. Moreover each nondiscrete, Hausdorff, locally bounded field topology on F is normable and hence first countable.

3. If $|\mathfrak{B}|$ is countable and greater than one, then there exist 2^{\aleph_0} normable, locally bounded field topologies on F.

Proof. By [4, Theorem 6.1], if F is an algebraic extension of E, then the only locally bounded ring topologies on F are the discrete and indiscrete topologies. The proof of 2 is the same as the proof of 1 of Theorem 1. If $|\mathfrak{B}| \geq 2$, let $x_1 \in \mathfrak{B}$ and let $E_0 = E(\mathfrak{B}\setminus\{x_1\})$. Then the transcendence degree of E_0 over E is nonzero. The proof that there exist 2^{\aleph_0} normable, locally bounded field topologies on F is the same as the proof of 2 of Theorem 1.

References

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27650

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use