The least area bounded by multiples of a curve
HTML articles powered by AMS MathViewer
- by Brian White
- Proc. Amer. Math. Soc. 90 (1984), 230-232
- DOI: https://doi.org/10.1090/S0002-9939-1984-0727239-0
- PDF | Request permission
Abstract:
For each positive integer $n$, we construct a smooth curve $\Gamma$ in ${{\mathbf {R}}^4}$ such that the least area of a surface (integral current) with boundary $n\Gamma$ is less than $n/k$ of the least area of a surface with boundary $k\Gamma \left ( {1 \leqslant k < n} \right )$.References
- Herbert Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974/75), 351–407. MR 348598, DOI 10.1512/iumj.1974.24.24031
- Frank Morgan, Area-minimizing currents bounded by higher multiples of curves, Rend. Circ. Mat. Palermo (2) 33 (1984), no. 1, 37–46. MR 743207, DOI 10.1007/BF02844410
- L. C. Young, Some extremal questions for simplicial complexes. V. The relative area of a Klein bottle, Rend. Circ. Mat. Palermo (2) 12 (1963), 257–274. MR 167600, DOI 10.1007/BF02851262
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 230-232
- MSC: Primary 49F20
- DOI: https://doi.org/10.1090/S0002-9939-1984-0727239-0
- MathSciNet review: 727239