Approximately transitive diffeomorphisms of the circle
HTML articles powered by AMS MathViewer
- by J. Hawkins and E. J. Woods
- Proc. Amer. Math. Soc. 90 (1984), 258-262
- DOI: https://doi.org/10.1090/S0002-9939-1984-0727245-6
- PDF | Request permission
Abstract:
We prove that every ${C^3}$ diffeomorphism of the circle with an irrational rotation number (and some ${C^2}$ diffeomorphisms as well) are approximately transitive. This provides a class of examples of approximately transitive transformations which are smooth but non-measure-preserving.References
- A. Connes and E. J. Woods, Approximately transitive flows and ITPFI factors, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 203–236. MR 796751, DOI 10.1017/S0143385700002868
- Jane Hawkins, Non-ITPFI diffeomorphisms, Israel J. Math. 42 (1982), no. 1-2, 117–131. MR 687939, DOI 10.1007/BF02765015
- Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680
- Y. Katznelson, The action of diffeomorphism of the circle on the Lebesgue measure, J. Analyse Math. 36 (1979), 156–166 (1980). MR 581808, DOI 10.1007/BF02798775
- E. J. Woods, ITPFI factors—a survey, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 25–41. MR 679496
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 258-262
- MSC: Primary 47A35; Secondary 28A99, 46L55
- DOI: https://doi.org/10.1090/S0002-9939-1984-0727245-6
- MathSciNet review: 727245