CONTINUITY OF MEASURABLE CONVEX
AND BICONVEX OPERATORS

LIONEL THIBAULT

Abstract. We prove that a mapping from the product of two complete metrizable
vector spaces into a topological vector space which is separately universally measurable
and separately convex with respect to a convex cone is continuous.

0. Introduction. If \(X \) is a complete separable vector space and if \(f \) is a midpoint \nconvex mapping from \(X \) into the real line \(\mathbb{R} \) which is Christensen measurable, then F. \nFischer and Z. Slodkowski have proved in [4] that \(f \) is continuous by showing that
\(\{(x, r) \in X \times \mathbb{R} : f(x) < r\} \) is open in \(X \times \mathbb{R} \). Results of this kind about continuity
of universally measurable morphisms were obtained before by A. Douady and L. \nSchwartz (see [7]) for linear operators between locally convex spaces, and by J. P. R. \nChristensen in [3] for homomorphisms between topological complete metrizable
groups.

In this paper we are concerned with the study of convex operators taking values in
a vector space. Vector analogues of the preceding results are proved. In fact, we
establish that a separately universally measurable mapping \(f : X \times Y \to F \), where \(X \)
and \(Y \) are two complete metrizable vector spaces and \(F \) is any topological vector
space, is continuous whenever it is separately midpoint convex with respect to a
convex cone.

Let us also note that many other interesting results about continuity of convex
operators are given by J. M. Borwein in [1].

1. Preliminaries. Throughout this paper \(F \) will denote a (real separated) topologi-
cal vector space and \(X \) and \(Y \) two real complete metrizable topological vector spaces.

Let \(P \) be a convex cone in \(F \), i.e. \(tP + sP \subseteq P \) for all \(t, s \geq 0 \). One says that \(P \) is
normal if there is a base of neighbourhoods \(V \) of zero with
\[V = (V + P) \cap (V - P). \]

Such neighbourhoods are said to be full. Many properties and examples of normal
convex cones can be found in [7]. In the sequel we shall always assume that \(P \) is a
normal convex cone in \(F \).

A subset \(B \) of a topological space \(S \) is universally measurable if for each finite
measure \(m \) over the Borel tribe \(\mathcal{B}(S) \) the set \(B \) belongs to the \(m \)-completion of \(\mathcal{B}(S) \).
The set of universally measurable subsets of \(S \) will be denoted by \(\mathcal{U}(S) \).

Received by the editors May 15, 1983.
1980 Mathematics Subject Classification. Primary 46A40, 46A55.
Key words and phrases. Convex operators, biconvex operators, universally measurable mappings.
A mapping \(f: S \to F \) is universally measurable if for each open subset \(\Omega \) of \(F \) the set \(f^{-1}(\Omega) \) is in \(\mathcal{L}(S) \).

1.1. Remark. As a direct consequence of Proposition 8 in [5, p. 12], for each continuous mapping \(f \) from a topological space \(S \) into a topological space \(T \), one has \(f^{-1}(B) \in \mathcal{L}(S) \) for each \(B \in \mathcal{L}(T) \). □

Let us recall the following consequence of a very nice and important result of Christensen.

1.2. Proposition. If \(X = \bigcup_{n \in \mathbb{N}} B_n \) is a countable union of universally measurable subsets, then there exists an integer \(k \) such that \(B_k - B_k = \{ x - y : x, y \in B_k \} \) is a neighbourhood of zero.

Proof. This is a direct consequence of Theorem 7.1 in [3]. □

2. Midpoint convex operators.

2.1. Definition. One says that \(f: X \to F \) is \(P \)-convex if

\[
(2.1) \quad f(tx + (1 - t)y) \in tf(x) + (1 - t)f(y) - P \quad \text{for all } t \in [0,1],
\]

and \(f \) is midpoint \(P \)-convex if \((2.1) \) holds for \(t = 1/2 \).

One observes that additive mappings are always midpoint convex.

Remark. It is easily shown that \(f \) is midpoint \(P \)-convex if and only if

\[
(2.2) \quad f(2^{-\kappa}kx + (1 - 2^{-\kappa})ky) \in 2^{-\kappa}kf(x) + (1 - 2^{-\kappa})kf(y) - P
\]

for all \(x, y \in X \), \(k \) and \(n \in \mathbb{N} \) with \(0 \leq k \leq 2^n \). It follows that a midpoint \(P \) convex operator with closed epigraph is convex.

2.2. Lemma. A midpoint \(P \)-convex operator \(f: X \to F \) is continuous at \(a \in X \) if and only if \(f \) is upper semicontinuous at \(a \) in the following sense: for every neighbourhood \(W \) of zero in \(F \) there exists a neighbourhood \(V \) of zero in \(X \) such that

\[
(2.3) \quad f(a + x) \in f(a) + W - P \quad \text{for each } x \in V.
\]

Proof. It is clearly enough to show that the condition is sufficient. Let \(W \) be any neighbourhood of zero in \(F \). Choose a full circled neighbourhood \(W_0 \) of zero in \(Y \) with \(W_0 \subset W \) and a circled neighbourhood \(V \) of zero in \(X \) satisfying

\[
(2.3) \quad f(a + x) - f(a) \in W_0 - P \quad \text{for all } x \in V.
\]

As \(f \) is midpoint \(P \)-convex, we have for each \(x \in V \)

\[
f(a) \in \frac{1}{2}f(a - x) + \frac{1}{2}f(a + x) - P
\]

and hence

\[
f(a + x) - f(a) \in f(a) - f(a - x) + P \subset W_0 + P + P = W_0 + P.
\]

Making use of relation \((2.3) \) once again we obtain

\[
f(a + x) - f(a) \in (W_0 - P) \cap (W_0 + P) = W_0 \subset W
\]

for each \(x \in V \). □

2.3. Proposition. Let \(f: X \to F \) be a universally measurable midpoint \(P \)-convex operator; then:

(i) \(f \) is continuous,

(ii) if \(P \) is closed, \(f \) is a continuous \(P \)-convex operator.
Proof. Let us begin by proving the continuity. Let \(a \) be any point in \(X \). Put \(g(x) = f(a + x) - f(a) \). The operator \(g \) is obviously a midpoint convex operator with \(g(0) = 0 \) and by Remark 1.1 it is universally measurable. Let \(W_0 \) be a neighbourhood of zero in \(F \). Choose an open circled neighbourhood \(W \) of zero with \(W + W \subset W_0 \). For each nonnegative integer \(n \) consider the universally measurable set

\[
B_n = \{ x \in X : g(x) \in 2^{n+1}W, g(-x) \in 2^{n+1}W \}.
\]

Since \(X = \bigcup_{n \in \mathbb{N}} B_n \), there exists, by Proposition 1.2, an integer \(k \) such that \(B_k - B_k \) is a neighbourhood of zero in \(X \), and for each \(x \) in the neighbourhood of zero \(V := \frac{1}{2}B_k - \frac{1}{2}B_k = \frac{1}{2}B_k + \frac{1}{2}B_k \) we may write \(x = \frac{1}{2}b + \frac{1}{2}b' \) with \(b, b' \in B_k \),

\[
g(x) = \frac{1}{2}g(b) + \frac{1}{2}g(b') - P \subset 2^kW + 2^kW - P \subset 2^kW_0 - P
\]

and hence

\[
2^{-k}g(x) \in W_0 - P.
\]

As \(g \) is midpoint \(P \)-convex with \(g(0) = 0 \), we have for each \(x \in V \),

\[
g(2^{-k}x) \in 2^{-k}g(x) - P \subset W_0 - P
\]

and hence by Lemma 2.2, \(g \) is continuous at 0, which implies that \(f \) is continuous.

If \(P \) is closed, then the continuity of \(f \) and relation (2.2) easily imply that \(f \) is \(P \)-convex. \(\square \)

3. Midpoint biconvex operators.

3.1. Definition. A mapping \(f : X \times Y \to F \) is called a midpoint \(P \)-biconvex operator if for each \((x, y) \in X \times Y \) the mappings \(f(x, \cdot) \) and \(f(\cdot, y) \) are midpoint \(F \)-convex operators.

3.2. Proposition. Let \(f : X \times Y \to F \) be a separately universally measurable midpoint \(P \)-biconvex operator; then:

(i) \(f \) is continuous,

(ii) if \(P \) is closed, \(f \) is a continuous \(P \)-biconvex operator.

Proof. Let \((c, d)\) be any point in \(X \times Y \). Put \(g(x, y) = f(c + x, d + y) - f(c, d + y) \). The mapping \(g \) is separately universally measurable and \(g(0, 0) = 0 \). Let \((x_n, y_n)_{n \in \mathbb{N}} \) be any sequence in \(X \times Y \) converging to zero and let \(W_0 \) be any full circled neighbourhood of zero in \(F \). Choose an open neighbourhood \(W \) of zero satisfying \(W + W \subset W_0 \). For each \(x \in X \), by Proposition 2.3, the mapping \(g(x, \cdot) \) is continuous and hence the set \(\{ g(x, y_n) : n \in \mathbb{N} \} \) is topologically bounded in \(F \) as \(\{0\} \cup \{y_n : n \in \mathbb{N}\} \) is compact in \(Y \). So if we put, for each \(p \in \mathbb{N} \),

\[
B_p = \{ x \in X : g(x, y_n) \in 2^{p+1}W \text{ and } g(-x, y_n) \in 2^{p+1}W, \forall n \in \mathbb{N} \},
\]

then \(X = \bigcup_{p \in \mathbb{N}} B_p \) and hence, by Proposition 1.2, there exists an integer \(k \) and a circled neighbourhood \(V \) of zero in \(X \) with \(V \subset \frac{1}{2}B_k - \frac{1}{2}B_k = \frac{1}{2}B_k + \frac{1}{2}B_k \). Therefore, for each \(x = \frac{1}{2}b + \frac{1}{2}b' \in V \) with \(b, b' \in B_k \) and each \(n \in \mathbb{N} \), invoking the midpoint convexity of \(g(\cdot, y_n) \) we have

\[
g(x, y_n) \in \frac{1}{2}g(b, y_n) + \frac{1}{2}g(b', y_n) - P \subset 2^kW + 2^kW - P \subset 2^kW_0 - P
\]
and hence again, by the midpoint convexity of \(g(\cdot, y_n) \) and the relation \(g(0, y_n) = 0 \), we have
\[
g(2^{-k}V, y_n) \subseteq (W_0 - P) \cap (W_0 + P) = W_0 \quad \text{for every } n \in \mathbb{N}.
\]
As \(\lim_{n \to \infty} x_n = 0 \), we may conclude that \(\lim_{n \to \infty} g(x_n, y_n) = 0 \) and the proof is complete since \(y \to f(c, d + y) \) is continuous. □

The above proof also gives the following result.

3.3. **Proposition.** Let \(f: X \times Y \to F \) be a universally measurable midpoint \(P \)-convex-concave operator, that is \(f(\cdot, y) \) and \(-f(x, \cdot) \) are midpoint \(P \)-convex for each \((x, y) \in X \times Y\); then:

(i) \(f \) is continuous,

(ii) if \(P \) is closed, \(f \) is a continuous \(P \)-convex-concave operator.

Remarks. (1) If \(X \) and \(Y \) are also separable and if \(\mathcal{C}(X) \) denotes the tribe of Christensen measurable subsets of \(X \), that is (see [4]) the set of subsets \(C \subseteq X \) for which there exist two universally measurable subsets \(A \) and \(M \), a probability measure \(m \) on \(\mathcal{B}(X) \) and a subset \(N \subseteq M \) such that \(C = A \cup N \) and \(m(x + M) = 0 \) for all \(x \in X \), the above result still holds whenever \(f \) is separately \(\mathcal{C}(X) \) and \(\mathcal{C}(Y) \) measurable.

(2) Results in the line of Proposition 3.2 about equicontinuous families of biconvex or concave-convex operators can be found in [6].

References