Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Analytic functions with large sets of Fatou points

Authors: J. S. Hwang and Peter Lappan
Journal: Proc. Amer. Math. Soc. 90 (1984), 293-298
MSC: Primary 30D40
MathSciNet review: 727253
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a function $ f$ analytic in the unit disc $ D$, and for each $ \lambda > 0$, let $ L\left( \lambda \right) = \left\{ {z \in D:\left\vert {f\left( z \right)} \right\vert = \lambda } \right\}$ denote a level set for $ f$. We introduce a class $ \mathcal{L}$, of functions characterized by geometric properties of a collection of sets $ \left\{ {L\left( {{\lambda _n}} \right)} \right\}$, where $ \left\{ {{\lambda _n}} \right\}$ is an unbounded sequence. We show that $ {\mathcal{L}_1}$, is a proper subclass of the class $ \mathcal{L}$ of G. R. MacLane. Let $ {A_\infty }$ denote the set of points $ {e^{i\theta }}$ at which the function $ f$ has $ \infty $ as an asymptotic value, and let $ F\left( f \right)$ denote the set of Fatou points of $ f$. We prove that for a function $ f$ in the class $ {\mathcal{L}_1}$, if $ \Gamma $ is an arc of the unit circle such that $ \Gamma \cap {A_\infty } = \emptyset $, then almost every point of $ \Gamma $ belongs to $ F\left( f \right)$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D40

Retrieve articles in all journals with MSC: 30D40

Additional Information

Keywords: Level set, Fatou point
Article copyright: © Copyright 1984 American Mathematical Society