## Stability of typical continuous functions with respect to some properties of their iterates

HTML articles powered by AMS MathViewer

- by J. Smítal and K. Neubrunnová
- Proc. Amer. Math. Soc.
**90**(1984), 321-324 - DOI: https://doi.org/10.1090/S0002-9939-1984-0727258-4
- PDF | Request permission

## Abstract:

Let $I$ be a real compact interval, and let $C$ be the space of continuous functions $I \to I$ with the uniform metric. For $f \in C$ denote $\nu (f) = {\sup _{x \in I}}(\lim {\sup _{n \to x}}{f^n}(x) - \lim {\inf _{n \to x}}{f^n}(x))$, where ${f^n}$ is the $n$th iterate of $f$. Then for each positive $d$ there is an open set ${C^*}$ dense in $C$ such that the oscillation of $v$ at each point of ${C^*}$ is less than $d$. Consequently, $\nu$ is continuous in $C$ except of the points of a first Baire category set.## References

- Louis Block,
*Stability of periodic orbits in the theorem of Šarkovskii*, Proc. Amer. Math. Soc.**81**(1981), no. 2, 333–336. MR**593484**, DOI 10.1090/S0002-9939-1981-0593484-8 - Peter E. Kloeden,
*Chaotic difference equations are dense*, Bull. Austral. Math. Soc.**15**(1976), no. 3, 371–379. MR**432829**, DOI 10.1017/S0004972700022802 - O. M. Šarkovs′kiĭ,
*Co-existence of cycles of a continuous mapping of the line into itself*, Ukrain. Mat. Ž.**16**(1964), 61–71 (Russian, with English summary). MR**0159905** - O. M. Šarkovs′kiĭ,
*On cycles and the structure of a continuous mapping*, Ukrain. Mat. Ž.**17**(1965), no. 3, 104–111 (Russian). MR**0186757**
J. Smítal and K. Smítalová, - P. Štefan,
*A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line*, Comm. Math. Phys.**54**(1977), no. 3, 237–248. MR**445556**, DOI 10.1007/BF01614086

*Structural stability of non-chaotic difference equations*, J. Math. Anal. Appl.

**89**(1982).

## Bibliographic Information

- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**90**(1984), 321-324 - MSC: Primary 54H20; Secondary 26A18
- DOI: https://doi.org/10.1090/S0002-9939-1984-0727258-4
- MathSciNet review: 727258