A "RIEMANN HYPOTHESIS" FOR TRIANGULABLE MANIFOLDS

K. S. SARKARIA

ABSTRACT. Given a triangulable manifold we show how to find a triangulation whose characteristic polynomial has roots which are either real or on the line \(\Re z = 1/2 \).

If \(K \) is a (finite) simplicial complex, then \(f_K(z) \) will denote the polynomial \(\chi/2 - f_0(K) \cdot z + f_1(K) \cdot z^2 - \cdots \); here \(\chi \) is the Euler characteristic of the underlying space \(M = |K| \) and \(f_i(K) \) is the number of \(i \)-simplices in \(K \).

Theorem. If \(M \) is any closed triangulable manifold, then it admits a triangulation \(K \) for which all the nonreal zeros of \(f_K(z) \) lie on the line \(\Re z = 1/2 \).

Proof. If \(L \) is any triangulation of \(M^m \), then one has the functional equation

\[
 f_L(z) = (-1)^{m+1} f_L(1 - z).
\]

(This fact is well known and is a concise way of writing the Dehn-Sommerville equations (see e.g. [1, p. 101]): it was observed by Klee [2] that these equations hold if the link of each \(i \)-simplex of \(L \) has the same Euler characteristic as an \((m - i - 1) \)-dimensional sphere, e.g. if \(L \) triangulates a closed \(m \)-manifold.) So the roots of \(f_L(z) \) are symmetrically situated about the real axis and the line \(\Re z = 1/2 \).

For each integer \(q \geq 0 \) we construct a simplicial complex \(L_q \) as follows: \(L_0 = L \) is any triangulation of \(M^m \) and \(L_{q+1} \) is obtained by deriving an \(m \)-simplex of \(L_q \). We note that

\[
 f_{L_q}(z) = f_L(z) - qz + q(m + 1)z^2 - q\left(\frac{m+1}{2}\right)z^3 + \ldots
\]

\[
 + (-1)^{m+1} q \left(\frac{m+1}{m}\right) z^{m+1} + (-1)^{m+1} qz^{m+1}
\]

\[
 = f_L(z) - qz(1 - z)^{m+1} - (-1)^{m+1} qz^{m+1}(1 - z)
\]

We assert that for all \(q \) sufficiently big \(K = L_q \) is a triangulation of \(M^m \) such that \(f_K(z) \) has distinct roots of which all but 2 lie on the line \(\Re z = 1/2 \). It is clear that the remaining 2 roots must then be equal to \(1/2 \pm \kappa \) for some \(\kappa > 0 \); if \(\chi = 0 \) these exceptional roots are obviously 0 and 1.

Note that \(f_K(1 - z) = (-1)^{m+1} f_K(z) \) and \(f_K(\bar{z}) = \overline{f_K(z)} \) imply that for \(m \) odd (resp. \(m \) even) \(f_K(z) \) takes real (resp. purely imaginary) values on the line \(\Re z = 1/2 \); the same is also true for the degree \(m + 1 \) polynomial

\[
 -z(1 - z)^{m+1} - (-1)^{m+1} z^{m+1}(1 - z) = q^{-1} f_K(z) - q^{-1} \cdot f_L(z).
\]

Received by the editors September 3, 1982 and, in revised form, June 6, 1983.

1980 Mathematics Subject Classification. Primary 57Q15; Secondary 52A40, 05C15.
Next we observe that the $m - 1$ roots of $\frac{-z(1 - z)^{m+1} - (-1)^{m+1}e^{m+1}(1 - z)}{z(1 - z)}$ other than 0 and 1 satisfy $|z/(1 - z)| = 1$, i.e. lie on the line $\Re z = 1/2$. So for q big the neighbouring polynomial $q^{-1}f_k(z)$ must also have $m - 1$ roots on the line $\Re z = 1/2$. Q.E.D.

Remark. Let L be a triangulation of M^m and let $C(q, m + 1)$, $q \geq m + 2$, be a cyclic triangulation (see e.g. [1, p. 82]) of the sphere S^m. By omitting an m-simplex each from L and $C(q, m + 1)$ and then identifying their boundaries, one gets a triangulation L^q of M^m. One can verify (using equation (13) on p. 172 of [1]) to examine the roots of the polynomial of $C(q, m + 1)$ that if $m \geq 5$ and q is sufficiently big, then $f_{L^q}(z)$ has some roots which are neither real nor on the line $\Re z = 1/2$.

The “Riemann hypothesis” considered above is related to the lower and upper bound conjectures for manifolds and is amongst the problems posed in §6 of [3].

I am grateful to the referee for pointing out a mistake in the original version of this paper.

References