A strong form of the Phragmén-Brouwer theorem
HTML articles powered by AMS MathViewer
- by R. F. Dickman
- Proc. Amer. Math. Soc. 90 (1984), 333-337
- DOI: https://doi.org/10.1090/S0002-9939-1984-0727261-4
- PDF | Request permission
Abstract:
In this paper we prove the following form of the Phragmen-Brouwer Theorem: a locally connected, connected normal ${T_1}$-space $X$ is unicoherent if and only if for every pair of disjoint nonseparating continua $C$ and $D$ in $X$, $C \cup D$ does not separate $X$. Among the several corollaries is the proposition: $X$ is multicoherent if and only if $X$ is the union of a circular chain of continua $\left \{ {{A_0},{A_1},{A_2},{A_3}} \right \}$ where no three of the ${A_i}$’s have a point in common.References
- Harold Bell, Ezra Brown, R. F. Dickman Jr., and E. L. Green, Circularity of graphs and continua: topology, Fund. Math. 112 (1981), no. 2, 103–110. MR 619486, DOI 10.4064/fm-112-2-103-110
- Harold Bell and R. F. Dickman Jr., A counterexample to a conjecture of A. H. Stone, Proc. Amer. Math. Soc. 71 (1978), no. 2, 305–308. MR 482699, DOI 10.1090/S0002-9939-1978-0482699-5 —, The end of a conjecture of A. H. Stone, Topology Appl. (submitted).
- R. F. Dickman Jr., A proof of a conjecture of A. H. Stone, Proc. Amer. Math. Soc. 80 (1980), no. 1, 177–180. MR 574531, DOI 10.1090/S0002-9939-1980-0574531-5
- R. F. Dickman Jr., Multicoherent spaces, Fund. Math. 91 (1976), no. 3, 219–229. MR 420578, DOI 10.4064/fm-91-3-219-229
- R. F. Dickman Jr. and L. R. Rubin, $C$-separated sets and unicoherence, Fund. Math. 83 (1973), no. 1, 25–33. MR 334166, DOI 10.4064/fm-83-1-25-33
- J. H. V. Hunt, The Phragmén-Brouwer theorem for separated sets, Bol. Soc. Mat. Mexicana (2) 19 (1974), no. 1, 26–35. MR 431108
- J. H. V. Hunt and E. D. Tymchatyn, A theorem on involutions on unicoherent spaces, Quart. J. Math. Oxford Ser. (2) 32 (1981), no. 125, 57–67. MR 606923, DOI 10.1093/qmath/32.1.57
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc. 65 (1949), 427–447. MR 30743, DOI 10.1090/S0002-9947-1949-0030743-8
- A. H. Stone, Incidence relations in multicoherent spaces. I, Trans. Amer. Math. Soc. 66 (1949), 389–406. MR 30744, DOI 10.1090/S0002-9947-1949-0030744-X
- A. H. Stone, Incidence relations in multicoherent spaces. II, Canad. J. Math. 2 (1950), 461–480. MR 38065, DOI 10.4153/cjm-1950-044-5
- A. H. Stone, Incidence relations in multicoherent spaces. III, Pacific J. Math. 2 (1952), 99–126. MR 46633, DOI 10.2140/pjm.1952.2.99
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 333-337
- MSC: Primary 54F55; Secondary 54D05
- DOI: https://doi.org/10.1090/S0002-9939-1984-0727261-4
- MathSciNet review: 727261