ON A FAMILY OF SPECIAL LINEAR SYSTEMS
ON ALGEBRAIC CURVES1

EDMOND E. GRIFFIN II

Abstract. \(\mathcal{M}_6 \) is a scheme parametrizing pairs \(L \rightarrow C \) of smooth algebraic curves \(C \) of genus 10 together with line bundles \(L \) of degree 6 such that \(H^0(C, L) \geq 3 \). It is shown that one of the irreducible components of this scheme is nonreduced at every point.

Introduction. In [ACGH] a general method is outlined for computing the dimension of the tangent space \(T_{\mu}^{\mathcal{M}_g} \). \(\mathcal{M}_g \) is the scheme parametrizing pairs \(L \rightarrow C \) in which \(C \) is a smooth curve of genus \(g \), \(L \) is a line bundle such that

1. \(\deg_c(L) = d \),
2. \(\dim H^0(C, L) = h^0(C, L) \geq r + 1 \),

and \(l = L \rightarrow C \) is a “generic” point on \(\mathcal{M}_g \). Specifically, \(l \in \mathcal{M}_{d, g}^{r+1} \).

The dimension of this tangent space is determined by the kernels of two naturally defined maps on the cohomology of \(C \) in \(L \) and \(K_C \). These maps, \(\mu_0 \) and \(\mu_1 \), together with their kernels will be computed explicitly in the case \(l \in \mathcal{M}_{6,10}^{2} - \mathcal{M}_{6,10}^{2+1} \) and \(C \) a hyper-elliptic curve. This calculation will then be used to show that \(\mathcal{M}_{6,10}^{2} \) has a nonreduced component.

It will be clear that these computations generalize to higher genus and degree hyper-elliptic curves, but the actual calculations become fairly intractable. For this reason only the case of \(\mathcal{M}_{6,10}^{2} \) will be considered here.

1. We begin with a review of the basic set up and terminology of [ACGH]. For a fixed, smooth curve \(C \) of genus \(g \), define

\[
\text{Pic}^d(C) = \{ L | \deg_c(L) = d \}
\]

\[
\cup
\]

\[
W^d_c(C) = \{ L | \deg_c(L) = d \text{ and } h^0(C, L) \geq r + 1 \}.
\]

It is well known that

\[
T_{\mu}(\text{Pic}^d(C)) \simeq H^1(C, \mathcal{O}_C).
\]
A first order variation of a line bundle L on C is a commuting diagram,

\[
\begin{array}{ccc}
L & \rightarrow & \mathcal{L} \\
\downarrow & & \downarrow \\
C & \rightarrow & C \times S_1 \\
\downarrow & & \downarrow \\
S_0 & \rightarrow & S_1
\end{array}
\]

where $S_n = \text{Spec}(\mathbb{C}[t]/(t^{n+1}))$. The set of isomorphism classes of such diagrams can be canonically identified with $H^1(C, \mathcal{O}_C)$.

The obstruction to extending a section $s \in H^0(C, L)$ to a section of \mathcal{L} can be seen to be $\varphi \cdot s \in H^1(C, L)$, where

\[
\varphi \cdot s \in H^1(C, \mathcal{O}_C) \otimes H^0(C, L) \rightarrow H^1(C, L)
\]

is the usual cup product, and $\varphi \in H^1(C, \mathcal{O}_C)$ is the element corresponding to \mathcal{L}. Thus, one sees that, at a point $L \in W^d_d(C) - W^d_{r+1}(C)$, a tangent vector φ in $H^1(C, \mathcal{O}_C) = T_L(\text{Pic}^d(C))$ is also in $T_L(W^d_d(C))$ if and only if $\varphi: H^0(C, L) \rightarrow H^1(C, L)$ is the zero map. In other words, φ is in the kernel of the map

\[
H^1(C, \mathcal{O}_C) \rightarrow \text{Hom}(H^0(C, L), H^1(C, L)).
\]

Dualizing yields the map

\[
\mu_0: H^0(C, L) \otimes H^0(C, KL^{-1}) \rightarrow H^0(C, K)
\]

such that

\[
T_L(W^d_d(C)) = (\text{Image } \mu_0)^{\perp}
\]

in $H^0(C, L) = r + 1$.

Now the Riemann-Roch theorem implies $h^0(C, KL^{-1}) = g - d + r$. So,

\[
\dim(\text{Image } \mu_0)^{\perp} = g - \dim(\text{Image } \mu_0) = g - ((r + 1)(g - d + r) - \dim(\text{ker } \mu_0))
\]

\[
= (g - (r + 1)(g - d + r)) + \dim(\text{ker } \mu_0) = \text{def } \rho + \dim(\text{ker } \mu_0).
\]

The number ρ is called the Brill-Noether number. So, at a generic L,

\[
\dim T_L(W^d_d(C)) = \rho + \dim(\text{ker } \mu_0).
\]

Next we allow C to vary and define (with g fixed)

\[
\text{Pic}^d = \{ L \rightarrow C | \deg_c(L) = d, g(C) = g \}
\]

\[
\text{Pic}^d = \{ L \rightarrow C | \deg_c(L) = d, g(C) = g, \text{ and } h^0(C, L) \geq r + 1 \}.
\]

The fact that these are well-defined schemes with good properties is nontrivial, but is studied carefully in [ACGH].

The tangent space $T_L(\text{Pic}^d)$ can be identified with $H^1(C, \Sigma_L)$, where Σ_L is the extension of \mathcal{O}_C by Θ_C,

\[
0 \rightarrow \mathcal{O}_C \rightarrow \Sigma_L \rightarrow \Theta_C \rightarrow 0,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
with extension class
\[\omega = c_1(L) \in H^1(C, \text{Hom}(\Theta, \Theta)) \approx H^1(C, K). \]

This leads (nontrivially) to the definition of \(\mu_1 : \ker(\mu_0) \to H^0(C, K^2) \) given by

\[
\mu_1 \left(\sum_i s_i \otimes r_i \right) = \frac{\partial s_i}{\partial z_a} \otimes r_i \in H^0(C, K^2),
\]

where \(\sum_i s_i \otimes r_i \) is in \(\ker(\mu_0) \).

Again, by studying obstructions, it can be seen that when \(h^0(C, L) = r + 1 \), we have

\[
\dim T_i(\mathbb{C}_{d, g}) = 3g - 3 + \rho + \dim(\ker(\mu_1)).
\]

Thus in order to compute the dimension of \(T_i(\mathbb{C}_{6,10}) \), one must first find \(\ker(\mu_0) \) and then the dimension of \(\ker(\mu_1) \).

2. Begin by fixing \(L = L \to C \in \mathbb{C}_{6,10} - \mathbb{C}_{3,10} \), where \(C \) is a smooth, genus 10, hyper-elliptic curve. A simple investigation of the map associated to the linear system \(|L| \), \(\varphi_L : C \to \mathbb{P}^2 \) (see [Griffin 2]) shows that, in this case, \(|L| \) has two basepoints and is of the form \(|L| = 2g_2 + Q + R \), with \(Q \neq iR \), where \(i : C \to C \) is the involution on \(C \). We may assume \(|L| = |4P| + Q + R \), where \(P \) is a Weierstrass point on \(C \).

In order to compute \(\mu_0 \), choose a basis for \(H^0(C, L) = H^0(C, 4P + Q + R) \), say \(x_0, x_1, x_2, \) where \(\text{ord}_P(x_i) = 2i \). Then a basis for

\[H^0(C, KL^{-1}) = H^0(C, \mathcal{O}_C(10P + iQ + iR)) \]

is

\[\{ x_0^2, x_0x_1, x_0x_2, x_1x_2, x_2^2, y_4 \} \quad \text{where} \quad \text{ord}_P(y_4) = 10. \]

On the other hand, \(H^0(C, K) = H^0(C, \mathcal{O}_C(18P)) \) has basis

\(\{ x_0^3, x_0^2x_1, x_0^2x_2, x_0x_1x_2, x_0x_2^2, x_1x_2^2, x_2y_4, z_5, z_6 \} \quad \text{where} \quad \text{ord}_P(z_j) = 2j + 6. \)

From this it is clear that \(\mu_0 \) is neither injective nor surjective (\(\mu_0 \) just "multiplies" \(x_i \otimes x_j \to x_i x_j x_k \)). Its kernel has dimension 10 and basis given in

\[
\text{Table 1}
\]

\begin{align*}
\nu_1 : & x_0 \otimes x_0x_1 - x_1 \otimes x_0^2 \\
\nu_2 : & x_0 \otimes x_0x_2 - x_2 \otimes x_0^2 \\
\nu_3 : & x_0 \otimes x_1x_2 - x_1 \otimes x_0x_2 \\
\nu_4 : & x_0 \otimes x_1x_2 - x_2 \otimes x_0x_1 \\
\nu_5 : & x_0 \otimes x_2^2 - x_2 \otimes x_0x_2 \\
\nu_6 : & x_0 \otimes y_4 - x_2 \otimes x_1x_2 \\
\nu_7 : & x_1 \otimes x_1x_2 - x_2 \otimes x_0x_2 \\
\nu_8 : & x_1 \otimes x_2^2 - x_2 \otimes x_1x_2 \\
\nu_9 : & x_1 \otimes y_4 - x_2 \otimes x_2^2 \\
\nu_{10} : & x_0 \otimes x_0x_2 - x_1 \otimes x_0x_1 \\
\end{align*}
The elements \(v_6, v_7, v_9, v_{10} \) come from relations in \(H^0(C, K) \), namely \(x_0x_2 - x_1^2 = 0 \), \(x_0y_4 - x_1x_2^2 = 0 \) and \(x_1y_4 - x_2^2 = 0 \). The other elements are Koszul relations.

In order to compute \(\text{ker}(\mu_1) \) we will need

\[
\frac{\partial x_2}{\partial z} = \frac{\partial}{\partial z} \left(\frac{x_2}{x_0} \right) = \frac{2x_1x_0(x_2 + x_0(\partial x_2/\partial z))}{x_0^2}
\]

which comes from the relation \(x_0x_2 - x_1^2 \). The \(\alpha \) subscript will be dropped (for obvious reasons) and the dependence will be denoted by \(\{ \} \)'s.

We now give a table of \(w_i = \mu_1(v_i) \).

Table 2

\(w_1 \)	\(\{x_0x_1(\partial x_0/\partial z) - x_0^2(\partial x_1/\partial z)\} \)
\(w_2 \)	\(\{2x_0x_2(\partial x_0/\partial z) - 2x_0x_1(\partial x_1/\partial z)\} \)
\(w_3 \)	\(\{x_1x_2(\partial x_0/\partial z) - x_0x_2(\partial x_1/\partial z)\} \)
\(w_4 \)	\(\{2x_1x_2(\partial x_0/\partial z) - 2x_0x_2(\partial x_1/\partial z)\} \)
\(w_5 \)	\(\{2x_1^2(\partial x_0/\partial z) - 2x_1x_2(\partial x_1/\partial z)\} \)
\(w_6 \)	\(\{2y_4(\partial x_0/\partial z) - 2x_1^2(\partial x_1/\partial z)\} \)
\(w_7 \)	\(\{x_2^2(\partial x_0/\partial z) - x_1x_2(\partial x_1/\partial z)\} \)
\(w_8 \)	\(\{y_4(\partial x_0/\partial z) - x_2^2(\partial x_1/\partial z)\} \)
\(w_9 \)	\(\{(x_1y_4)(\partial x_0/\partial z) - y_4(\partial x_1/\partial z)\} \)
\(w_{10} \)	\(\{x_0x_2(\partial x_0/\partial z) - x_0x_1(\partial x_1/\partial z)\} \)

Trivially, \(w_2 = 2w_{10}, w_4 = 2w_3, w_5 = 2w_7, w_6 = 2w_8, \) and in \(H^0(C, K^2L) \) we have

\[
x_0w_2 = 2x_1w_1, \quad x_1w_2 = 2x_0w_3, \quad x_0w_5 = 2x_1w_3, \quad x_0w_6 = x_1w_5 \quad \text{and} \quad x_1w_6 = 2x_0w_9.
\]

This clearly implies there can be no linear relation among \(\{w_1, w_2, w_3, w_5, w_6, w_8\} \) in \(H^0(C, K^2) \). Consequently, the kernel of \(\mu_1 \) has basis \(\{w_2 - 2w_{10}, w_4 - 2w_3, w_5 - 2w_7, w_6 - 2w_8\} \). By equation (*) we finally have

\[
\dim T_1^0(\mathcal{O}^2_{6,10}) = 3g - 3 + \rho + \dim(\ker \mu_1) = 3(10) - 3 + 10 - 3(10 - 6 + 2) + 4 = 23.
\]

It is easy to compute the dimension of the hyper-elliptic component \(W \) of \(\mathcal{O}^2_{6,10} \). Since the \(g^1_2 \) on a hyper-elliptic curve is unique and \(l = L \to C \), where \(|L| = 2g^1_2 + P + Q \), one has immediately that

\[
\dim W = \dim\{\text{genus 10, hyper-elliptic curves}\} + 2.
\]

By Hurwitz's formula,

\[
\dim\{\text{hyper-elliptic curves of genus } g\} = 2g - 1.
\]

Therefore,

\[
\dim W = 19 + 2 = 21.
\]
Thus, since \(\dim T_l(\mathcal{H}_{6,10}^2) = 23 > \dim T_l(\mathcal{H}_{6,10}^3) = 21 \), we conclude

Theorem. The "component of hyper-elliptics" in \(\mathcal{H}_{6,10}^2 \) is nonreduced.

A final remark: In general the singularities of \(\mathcal{H}_{d,g}^r \) are "worst" along \(\mathcal{H}_{d,g}^{r+1} \), and in fact one can show, using these methods, that if \(l \in \mathcal{H}_{6,10}^3 \),

\[
\dim T_l(\mathcal{H}_{6,10}^3) > 23.
\]

In spite of this, \(\mathcal{H}_{6,10}^3 \) is smooth, i.e.

\[
\dim T_l(\mathcal{H}_{6,10}^3) = \dim T_l(\mathcal{H}_{6,10}^3) = 19
\]

for all \(l \in \mathcal{H}_{6,10}^3 \). So it is very important to distinguish between \(T_l(\mathcal{H}_{d,g}^{r+1}) \) and \(T_l(\mathcal{H}_{d,g}^r) \) when \(l \in \mathcal{H}_{d,g}^{r+1} \subset \mathcal{H}_{d,g}^r \).

References

[Griffin 2] ______, *The component structure of \(\mathbb{H}_g^2 \) (to appear).*

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Current address: Department of Mathematics, University of California, Los Angeles, California 90024