Final sets for operators on real entire functions of order one, normal type

Author:
C. L. Prather

Journal:
Proc. Amer. Math. Soc. **90** (1984), 363-369

MSC:
Primary 30D15; Secondary 30C15

DOI:
https://doi.org/10.1090/S0002-9939-1984-0728349-4

MathSciNet review:
728349

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real entire function of order one, normal type that is bounded on the real axis and , with a Laguerre-Pólya function satisfying . Then the final set of with respect to is contained in the real axis as either a discrete subset or the whole axis.

**[1]**Ralph Philip Boas Jr.,*Entire functions*, Academic Press Inc., New York, 1954. MR**0068627****[2]**R. P. Boas Jr.,*Asymptotic properties of functions of exponential type*, Duke Math. J.**20**(1953), 433–448. MR**0059365****[3]**R. P. Boas Jr. and Carl L. Prather,*Final sets for operators on finite Fourier transforms*, Houston J. Math.**5**(1979), no. 1, 29–36. MR**533636****[4]**Richard Duffin and A. C. Schaeffer,*Some properties of functions of exponential type*, Bull. Amer. Math. Soc.**44**(1938), no. 4, 236–240. MR**1563717**, https://doi.org/10.1090/S0002-9904-1938-06725-0**[5]**Albert Edrei,*On a conjecture of Pólya concerning the zeros of successive derivatives*, Scripta Math.**22**(1956), 31–44, 106–121. MR**0081945****[6]**R. Gethner,*A Pólya "schire" theorem for entire functions*, Ph. D. Thesis, Univ. of Wisconsin, Madison, 1982.**[7]**B. Ja. Levin,*Distribution of zeros of entire functions*, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman. MR**589888****[8]**G. Polya,*On the zeros of the derivatives of a function and its analytic character*, Bull. Amer. Math. Soc.**49**(1943), 178–191. MR**0007781**, https://doi.org/10.1090/S0002-9904-1943-07853-6**[9]**G. Pólya,*Über die Realität der Nullstellen fast aller Ableitungen gewisser ganzer Funktionen*, Math. Ann.**114**(1937), no. 1, 622–634 (German). MR**1513163**, https://doi.org/10.1007/BF01594201**[10]**Carl L. Prather,*On the zeros of derivatives of balanced trigonometric polynomials*, Pacific J. Math.**81**(1979), no. 2, 515–523. MR**547617****[11]**C. L. Prather,*On some new and old theorems, on final sets*, Houston J. Math.**7**(1981), no. 3, 407–430. MR**640983****[12]**C. L. Prather,*Final sets for operators on classes of entire functions representable as a Fourier integral*, J. Math. Anal. Appl.**82**(1981), no. 1, 200–220. MR**626749**, https://doi.org/10.1016/0022-247X(81)90233-X**[13]**Carl Prather,*Zeros of operators on functions and their analytic character*, Rocky Mountain J. Math.**14**(1984), no. 3, 679–697. MR**761118**, https://doi.org/10.1216/RMJ-1984-14-3-679

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D15,
30C15

Retrieve articles in all journals with MSC: 30D15, 30C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0728349-4

Keywords:
Real entire function,
exponential type,
final set,
differential operator

Article copyright:
© Copyright 1984
American Mathematical Society