THE JUMP INVERSION THEOREM FOR Q_{2n+1}-DEGREES

ILIAS G. KASTANAS

Abstract. Assuming projective determinacy we extend Friedberg's Jump Inversion theorem to Q_{2n+1}-degrees, after noticing that it fails for $\Delta_{2n+1}^\mathbf{1}$-degrees.

0. Preliminaries. We list some results from the theory of countable analytical sets and Q-theory. For a more extensive account, including proofs, see [2 and 5]. Some familiarity with forcing in the analytical hierarchy is assumed; consult [3 and 4].

Definition 0.1 (PD). C_{2n+1} is the largest countable Π^1_{2n+1} set of reals.

Definition 0.2 (PD). C_{2n+2} is the largest countable Σ^1_{2n+2} set of reals.

We mention some of their properties: C_{2n+2} is the set of reals that are recursive in some element of C_{2n+1}. The set C_m is made up of Δ_m^1-degrees (a Δ_m^1-degree is a set of reals that is an equivalence class for the equivalence relation $\equiv_{\Delta_m^1} \Delta_m^1(\alpha)$, and $\beta \in \Delta_m^1(\alpha)$). The Δ_m^1-degrees in the set C_m are well-ordered by $\equiv_{\Delta_m^1} \Delta_m^1(\beta)$.

Definition 0.3. Given $S \subseteq \omega^\omega$ let $H_{2n+1}(S) = \{ \alpha: \forall \beta \in S (\alpha \in \Delta^1_{2n+1}^\beta(\beta)) \}$; we call it the hull of S. If S is a nonempty Σ^1_{2n+1} set then $H_{2n+1}(S)$ is called a Σ^1_{2n+1}-hull. We let Q_{2n+1} be the union of all Σ^1_{2n+1}-hulls.

We have, assuming PD: The set Q_{2n+1} is Π^1_{2n+1}-closed. Every Σ^1_{2n+1}-hull is Π^1_{2n+1}-bounded (this means that if $R(\alpha, x)$ is Π^1_{2n+1} this so is $\exists \alpha \in H_{2n+1}(S) R(\alpha, x)$). The set Q_{2n+1} is the largest Σ^1_{2n+1}-hull, and the largest Π^1_{2n+1}-bounded set. Relativizing to an arbitrary real β we may define the set $Q_{2n+1}(\beta)$. We define also $\equiv_{Q_{2n+1}} \equiv_{\Delta^1_{2n+1}}$, and $\equiv_{Q_{2n+1}} \equiv_{\Delta^1_{2n+1}}$. This is an equivalence relation, and the equivalence classes are called Q_{2n+1}-degrees. The set C_{2n+1} consists of such degrees. The set Q_{2n+1} is the largest initial segment of C_{2n+1} closed under $\equiv_{\Delta_{2n+1}}$; it consists of the Δ_{2n+1}-degrees in C_{2n+1} up to and not including the degree of the first nontrivial (i.e. non-Δ_{2n+1}) Π^1_{2n+1} singleton y^2_{2n+1}. Relativizing to α we have y^2_{2n+1}. If $\alpha \equiv_{Q_{2n+1}} \beta$ then $y^2_{2n+1} \equiv_{\Delta_{2n+1}} y^2_{2n+1}$, and y^2_{2n+1} plays the role of the jump for Q_{2n+1}-degrees. The set Q_{2n+1} is closed under the Δ_{2n+1}-jump.

To obtain an ordinal assignment for the Q_{2n+1}-degrees we proceed as follows. Definition 0.4.

$$\lambda_{2n+1} = \sup \{ \xi: \xi \text{ is the length of a } \Sigma^1_{2n+1} \text{ wellfounded relation on } \omega^\omega \}$$

$$= \sup \{ \xi: \xi \text{ is the length of a } \Delta^1_{2n+1} \text{ prewellordering of } \omega^\omega \}. $$
Relativizing to α we obtain $\lambda_{2n+1}(\alpha)$. Finally

$$k_{2n+1}(\alpha) = \sup \{ \lambda_{2n+1}(\langle \alpha, \beta \rangle) : \lambda_{2n+1}(\langle \alpha, \beta \rangle) < \lambda_{2n+1}(\gamma_{\alpha}^{2n+1}) \}.$$

Of course, λ_{2n+1} is the ordinal assignment for the Δ_{2n+1}^Σ-degrees, e.g. the Spector Criterion holds: $d \leq \Delta_{2n+1}^\Sigma e \Rightarrow [d' \leq \Delta_{2n+1}^\Sigma e \Rightarrow \lambda_{2n+1}(d) < \lambda_{2n+1}(e)]$. Now we have $\lambda_{2n+1}(\alpha) < k_{2n+1}(\alpha) < \lambda_{2n+1}(\gamma_{\alpha}^{2n+1})$, $k_{2n+1}(\alpha)$ is invariant under $\equiv_{Q_{2n+1}}$, $\alpha \leq \lambda_{2n+1}(\beta) \Rightarrow k_{2n+1}(\alpha) \leq k_{2n+1}(\beta)$, and the Spector Criterion is true for Σ_{2n+1}-degrees: $d \leq Q_{2n+1} e \Rightarrow [d' \leq Q_{2n+1} e \Rightarrow k_{2n+1}(d) < k_{2n+1}(e)]$. Naturally d' is the degree of γ_d^{2n+1}.

The relation $k_{2n+1}(\alpha) < k_{2n+1}(\beta)$ is Σ_{2n+1}.

1. Background and definitions. One of the early results in the theory of Turing degrees was the following:

Friedberg Jump Inversion theorem [1]. If $b \geq b'$ then there exists an a such that $a' = a \lor b' = b$.

Of course 0 denotes the degree of the recursive sets, and $'$ denotes the Turing jump operation.

Next, the question was considered in the context of hyperdegrees. Let 0 denote the hyperdegree of the hyperarithmetical sets and $'$ the hyperjump. Does the above theorem hold? The answer is yes [6]:

Jump Inversion theorem for Δ_1^Σ-degrees. If $b \geq b'$ then there exists an a such that $a' = a \lor b' = b$.

A natural question now is: does the inversion theorem hold for Δ_{2n+1}^Σ-degrees? (We are assuming PD, needless to say). By a well-known argument Determinacy implies that there exists some cone on which inversion holds (a cone, by definition, is $\{a : a \geq b\}$, and b is called the base of the cone). But what is the base of the cone? Is it again 0? (I.e. the Δ_{2n+1}^Σ-jump of the degree of Δ_{2n+1}^Σ sets.) Surprisingly, the answer is no.

Theorem (Kechris, unpublished) (PD). If $n \geq 1$, then no real in C_{2n+2} can be a base for a cone of inversion of the Δ_{2n+1}^Σ-jump. ("Cone of inversion" of course means that every member of the cone is the Δ_{2n+1}^Σ-jump of some Δ_{2n+1}^Σ-degree.)

Proof. For notational simplicity we let $2n + 1 = 3$. If a member of C_4 were abase then it would be recursive in a member of C_3, so without loss of generality assume a base b is in C_3. Consider the set $C = \{ \alpha : \exists \beta \in Q_3(\alpha) (\beta \in C_3 and \alpha \leq \Delta_3^\Sigma \beta) \}$. It is a subset of C_4, and it is Π_3^1 because the quantification is bounded. So it is countable, and hence a subset of C_3. Since $b \in C_3$ everything $\geq b$ in C_3 is the Δ_3^Σ-jump of a member of C, thus a member of C_3. However the Δ_3^Σ-degrees in C_3 are wellordered with successor steps taken by the Δ_3^Σ-jump, so that a limit stage of this wellordering gives immediately a contradiction. (C_3 is closed under \equiv_{Q_3}, hence $\alpha' \in C_3 \Rightarrow \alpha \in C_3$, hence no limit level of C_3 is a Δ_3^Σ-jump.)

So the inversion theorem is a property of hyperdegrees that fails to generalize to Δ_{2n+1}^Σ-degrees, $n \geq 1$. Usually in such cases the validity of the property is restored if instead of Δ_{2n+1}^Σ-degrees we work with Q_{2n+1}-degrees. Indeed, it is the case that the jump inversion theorem holds for Q_{2n+1}-degrees, i.e. the base is again 0. Moreover we can establish that the Q_{2n+1}-jump is never one-to-one.
Jump Inversion theorem for Q_{2n+1}-degrees (PD). If c is a Q_{2n+1}-degree $\geq 0'$ then there exist Q_{2n+1}-degrees a, b such that $a \lor b = a' = b' = c$.

The rest of the paper is devoted to the proof of this theorem.

2. The proof. For notational simplicity we work with $2n + 1 = 3$. First we establish a lemma.

Lemma 2.1. If $0' \not\leq b$ (i.e. $k_3^0 = k_3^b$) then $b' = b \lor 0'$.

Proof. By the Spector Criterion $0' \not\leq b$ iff $k_3^0 = k_3^b$. Now $k_3^0 < k_3^{b \lor 0'}$, so again by the Spector Criterion $b' \leq b \lor 0'$. The opposite inequality is obvious.

Proof of the theorem. The set $\{a: k_3^a = k_3^0 \text{ and } a \not\in Q_3\}$ is Σ_1^0- and comeager. In fact there is a sequence D_0, D_1, \ldots of dense open sets, $\{D_i\} \in \Delta_3(y_0)$, such that $\cap D_i \subset \{a: k_3^a = k_3^0 \text{ and } a \not\in Q_3\}$. This is implicit in [3]; briefly, comeagerness is characterized by the Banach-Mazur game. Use the Game Formula to unfold it and make it Π^1_2; then the set of winning strategies is also Π^1_2, so there is a winning strategy recursive in y_0, by the Martin-Solovay basis theorem [5]. This gives the dense open sets.

We describe an inductive construction of reals a and b. Set $a_{-1} = b_{-1} = \varnothing$.

Inductive step. Suppose a_n, b_n have been constructed (they are finite sequences of integers). Consider the dense, open set D_{n+1} and extend a_n by a finite segment s, least in some fixed enumeration, so that the basic neighborhood defined by $a_n s$ is contained in D_{n+1}. Extend $b_n s$ by a finite segment t, least again, so that the basic neighborhood defined by $b_n s t$ is contained in D_{n+1}. Set now $a_{n+1} = a_n s t \{c(n)\}$, $b_{n+1} = b_n s t \{c(n) + 1\}$.

This completes the inductive step.

Let now $a = \bigcup a_n, b = \bigcup b_n$. Since $a, b \in \cap D_i$ we have by Lemma 2.1 that $a' = a \lor 0', b' = b \lor 0'$. Now $a \lor 0' \geq c$, because using y_0 we may trace the construction of a and find all $c(n)$'s. Likewise $b \lor 0' \geq c$. However $a \lor 0' \leq c$, too, because $0' \leq c$ and the construction of a only needs y_0 and c. The same holds for b, and therefore we have $a' = b' = a \lor 0' = b \lor 0' = c$. Finally note that $a \lor b \geq c$, because if both a and b are available then considering the points where they differ c may be obtained. So we have $a' = b' = a \lor b = c$, and a, b cannot have the same degree.

Remark. The real a, b may also be chosen to be of minimal degree by using perfect trees in Q_3 instead of finite sequences.

References

4. _______, Forcing with Δ perfect sets and minimal Δ-degrees, J. Symbolic Logic (to appear).

Department of Mathematics, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032