Finite group actions and nonseparating $2$-spheres
HTML articles powered by AMS MathViewer
- by Steven P. Plotnick
- Proc. Amer. Math. Soc. 90 (1984), 430-432
- DOI: https://doi.org/10.1090/S0002-9939-1984-0728363-9
- PDF | Request permission
Abstract:
We extend the splitting theorem of Meeks-Yau for finite group actions on three-manifolds to include manifolds containing nonseparating $2$-spheres, and give applications to branched covers of links.References
- C. McA. Gordon and R. A. Litherland, Incompressible surfaces in branched coverings, The Smith conjecture (New York, 1979) Pure Appl. Math., vol. 112, Academic Press, Orlando, FL, 1984, pp. 139–152. MR 758466, DOI 10.1016/S0079-8169(08)61639-6
- Paik Kee Kim and Jeffrey L. Tollefson, Splitting the PL involutions of nonprime $3$-manifolds, Michigan Math. J. 27 (1980), no. 3, 259–274. MR 584691 W. H. Meeks III, L. Simon and S. T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, preprint.
- William H. Meeks III and Shing Tung Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980), no. 3, 441–484. MR 595203, DOI 10.2307/1971088
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 430-432
- MSC: Primary 57S17; Secondary 57M12, 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1984-0728363-9
- MathSciNet review: 728363