CYCLIC STICKELBERGER COHOMOLOGY AND DESCENT OF KUMMER EXTENSIONS

LINDSAY N. CHILDS

Abstract. Let \(R \) be a field, \(S = R[\xi] \), \(\xi \) an \(n \)th root of unit, \(\Delta = \text{Gal}(S/R) \). The group of cyclic Kummer extensions of \(S \) on which \(\Delta \) acts, modulo those which descend to \(R \), is isomorphic to a group of roots of unity and to a second group cohomology group of \(\Delta \) whose definition involves a “Stickelberger element”.

Let \(R \) be a field, \(p \) an odd prime, \(n = p^r \), \(S \) the field obtained from \(R \) by adjoining a primitive \(n \)th root of unity to \(R \), \(\Delta = \text{Gal}(S/R) \). Every Galois extension \(T \) of \(S \) with group \(G \), cyclic of order \(n \) (in the sense of Chase, Harrison and Rosenberg [1]), is a Kummer extension. We consider when such a \(T \) descends to \(R \), that is, \(T = S \otimes_R T_0 \) for some Galois extension \(T_0 \) of \(R \). A necessary condition is that \(T \) be \(\Delta \)-normal, that is, \(\Delta \) extends to a set of \(R \)-algebra, \(G \)-module automorphisms of \(T \). We identify the group of \(\Delta \)-normal Galois extensions of \(S \) modulo those which descend with a certain twisted cyclic second cohomology group whose definition involves a formal analogue of the Stickelberger element in cyclotomic field theory. If \(n = p \), then \(\Delta \)-normal Galois extensions descend and the cohomology group vanishes. In general, the cohomology group is isomorphic to a certain group of roots of unity; hence if \(T \) is \(\Delta \)-normal, then there is a Kummer extension \(U = S[z] \), \(z^n \) an \(n \)th root of unity, so that the Harrison product \(T \cdot U \) descends.

Throughout the paper, \(G \) is a cyclic group of order \(n = p^r \), and \(\Delta \) is a cyclic group of order \(m \).

1. Cyclic Stickelberger cohomology. Let \(\Delta \) be cyclic of order \(m \), generated by \(\omega \), \(A \) a \(\Delta \)-module written multiplicatively. Then, as is well known, the usual group cohomology \(H^n(\Delta, A) \), \(n > 0 \), may be computed as the homology of the sequence

\[
\rightarrow A \rightarrow A \rightarrow A \rightarrow A \rightarrow
\]

where \(T \) is the map which raises to the \(\omega - 1 \) power,

\[
a^T = a^{\omega - 1} = a^{\omega a^{-1}},
\]

and \(N \) is the map which raises to the power \(\Sigma_{i=1}^n \omega^i \).

Now suppose \(A \) is \(n \)-torsion, \(a^n = 1 \) for all \(a \) in \(A \), and let \(t: \Delta \rightarrow (\mathbb{Z}/n\mathbb{Z})^* \) be a homomorphism. (By abuse of notation, we will view \(t(\delta) \), \(\delta \in \Delta \), as an integer.) Then we may define a \(t \)-twisted action of \(\Delta \) on \(A \), namely for \(a \in A \), \(\delta \in \Delta \), \(\delta \ast a = t(\delta)^{-1}(\delta(a)) \). Since \(t \) is a homomorphism and \(A \) is \(n \)-torsion, this action is well
defined. Thus A becomes a Λ-module via this twisted action, call it A_t, and we define the Stickelberger cohomology $H^i_t(\Lambda, A)$ by $H^i_t(\Lambda, A) = H^i(\Lambda, A_t)$ for $i \geq 0$. (Extending to all i to get the Tate groups is clear.)

We call $H^i_t(\Lambda, A)$ the ith Stickelberger cohomology because if we set $\tau(a) = T \ast_a$, $\eta(a) = N \ast a$ for $a \in A$, then $\eta(a)$ is a acted on by $\theta = \sum_{\delta \in \Delta} \delta^{-1}t(\delta)$, a formal analogue of the classical Stickelberger element in cyclotomic field theory.

In particular, $H^2_t(\Lambda, A) = \text{Ker } \tau/\text{Im } \eta$, where $\text{Ker } \tau = \{a \in A \mid a^\delta = a^{t(\delta)} \text{ for all } \delta \in \Delta\}$, the t-eigenspace of A, and so $H^2_t(\Lambda, A)$ may be viewed as a measure of the failure of the Stickelberger element θ to project onto the t-eigenspace of A.

Since $H^i_t(\Lambda, A)$ may be viewed as ordinary group cohomology,

$$\text{(1.1) } H^i_t(\Lambda, A) = 0 \text{ whenever } \Lambda \text{ and } A \text{ have relatively prime orders, e.g. whenever } m \text{ and } n \text{ are relatively prime.}$$

One objective of this paper is to describe a situation where $H^2(\Lambda, A) \neq 0$.

An alternative approach to a kind of Stickelberger cohomology may be found in [5].

2. We will need the following lemma of elementary number theory, which should be well known, but for which we know no convenient reference.

Lemma 2.1. Let $r \geq 2$ and e have order m mod p^r, where p is an odd prime dividing m. Then e has order mp mod p^{r+1}. Hence $(e^m - 1)/p^r$ is relatively prime to p.

Proof. $(\mathbb{Z}/p^r\mathbb{Z})^* = (\mathbb{Z}/p\mathbb{Z})^* \times P_r$ via $e \rightarrow (e^{p-1}, e^{p-1})$, where P_r is cyclic of order p^{r-1}. The “take the class mod p^r” map from $(\mathbb{Z}/p^r\mathbb{Z})^*$ to $(\mathbb{Z}/p\mathbb{Z})^*$ induces the same map from P_{r+1} onto P_r whose kernel is the unique subgroup of P_{r+1} of order p, and induces an isomorphism on $(\mathbb{Z}/p\mathbb{Z})^*$. Suppose e has order m mod p^r, p dividing m. Then e^{p-1} is nontrivial in P_r, hence also in P_{r+1}. If, in P_{r+1}, e^{p-1} has order p^c, some $c \geq 1$, then $(e^{p-1})^{p^c}$ has order p, and so is in ker$(P_{r+1} \rightarrow P_r)$. Hence e^{p-1} has order p^{r-1} in P_r. Thus the order of e mod p^{r+1} is p times the order of e mod p^r.

(Note that the lemma may fail when $r = 1 : 2$ has order $p - 1$ mod p^2 when $p = 1093$ or 3511. The statement of the lemma for $r = 1$ relates to the Wieferich-Miramanoff criteria for the first case of Fermat's Last Theorem. (See [7].))

3. Descent of Kummer extensions. Let p be an odd prime, and G a cyclic group of order $n = p^r$ generated by σ. Let R be a field of characteristic $> p$, and μ_n the group of nth roots of unity in some algebraic closure of R generated by ξ. Let $S = R[\xi]$, and $\Delta = \text{Gal}(S/R)$ of order m.

Let $t: \Delta \rightarrow \mathbb{Z}$ be defined by $t(\delta) = \xi^\delta$ for $\delta \in \Delta$, $1 \leq t(\delta) < n$. Then t induces an injection, also called t, from Δ to $(\mathbb{Z}/n\mathbb{Z})^*$.

Let $\text{Gal}(R, G)$ be the Harrison [6] group of isomorphism classes (as R-algebras and RG-modules) of Galois extensions of R with group G. Then, as is well known, $\text{Gal}(S, G)$ consists of Kummer extensions, and $\text{Gal}(S, G) \cong U(S)/U(S)^\sigma$ as follows: with ξ and σ fixed as above, let $s \in U(S)$, set $T = S[z]$ with $z^n = s$, $z^\sigma = \xi z$; then T is a Galois extension of S with group G. Conversely, given a Galois extension T of S, let $T_z = \{x \in T \mid x^\sigma = \xi x\}$, then $T_z = Sz$ for some invertible z in T, and...
$z^n = s \in U(S)$ yields the corresponding class in $U(S)/U(S)^n$. Note that $\{x \in T \mid x^n = \xi^h x\} = Sx^h$ for any h.

Define $\text{Gal}_A(S, G)$ to be the set of S-algebra, G-module isomorphism classes of Galois extensions of S with group G which have representatives T on which Δ lifts to a set of G-module automorphisms. $\text{Gal}_A(S, G)$ may be viewed as an analogue of the nomal Azumaya algebras studied in [4 and 3], so we call $\text{Gal}_A(S, G)$ the group of Δ-normal Galois extensions.

Let $j: \text{Gal}(\bar{R}, G) \to \text{Gal}(S, G)$ be the homomorphism induced by sending a Galois extension U of R to $U \otimes_R S$. Clearly, $\text{Im}(j) \subset \text{Gal}_A(S, G)$ and is the group of Galois extensions of S which descend. We prove

Theorem 3.1. $\text{Gal}_A(S, G)/\text{Im}(j) \cong \mu_n/\mu_n^m$.

Proof. Let $T = S[z]$ be a Kummer extension with group G, where $z^n = s$. Then s is defined up to an nth power. Suppose T is Δ-normal, so that $\omega \in \Delta$ lifts to an automorphism of T. Since Δ commutes with G, $(z^\omega)^s = (z^s)^\omega = \xi^s(z^\omega)$, so $z^\omega = c_\omega z^{(s^\omega)}$ for some $c \in S$, so $s^\omega = s^{(s^\omega)c_\omega}$. Let $\omega = t(\omega)$. By iterating ω, one easily checks that $z^\omega = z^{c^\kappa}$ where $\kappa = \sum_{k=0}^{m-1} \omega^{m-k} c^k$. Define γ by $\gamma = s^{(s^{-1})/n} c^\kappa$. Then γ is an nth root of unity. For, since $z^\omega = z^{c^\kappa}$, $s^\omega = s^{e^\kappa}$. Since ω has order m in S, $s^\omega = s$, so $1 = s^{e^\kappa} c^\kappa = \gamma^n$.

We induce a map φ from $\text{Gal}_A(S, G)$ to μ_n/μ_n^m by associating T to γ.

We show that φ is well defined. First, given s, c is defined only up to an nth root of unity. Multiplying c by ξ, an nth root of unity, multiplies γ by $\xi^n = \xi^m$. So the map $s \to \gamma$ is well defined.

To show that the map $s \to \gamma$ yields a well-defined map φ on $\text{Gal}_A(S, G)$, we replace s by st^ω for $t \in S$. Then $(st^\omega)^s = (st^\omega)^t(c t^{\omega-e})^n$, so c is replaced by $ct^{\omega-e}$, and γ by

$$(st^\omega)^n c(t^{\omega-e})\gamma = \gamma(t^\omega)^n c(t^{\omega-e})\gamma.$$

But

$$(\omega - e)\gamma = (\omega - e) \sum_{k=0}^{m-1} e^k \omega^{m-k} = (\omega^m - e^m) \omega;$$

hence, since ω has order m on S,$$(t^\omega)^n c(t^{\omega-e})\gamma = t^{\omega(e^m-1)} t^{\omega(\omega^m-e^m)} = 1.$$Thus φ is a well-defined map from $\text{Gal}_A(S, G)$ to μ_n/μ_n^m.

To show φ is a homomorphism observe that if s, r are in $U(S)$ with $s^\omega = s^e c^{n\omega}$, $r^\omega = r^e d^{n\omega}$, then $(sr)^\omega = (sr)^t(c d)^n\omega$, so the image of sr is

$$\gamma_{sr} = (sr)^t c^{n-1} c^n = \gamma_s \gamma_r.$$Ontoness of φ is trivial if p does not divide m. If p divides m, let s be a primitive nth root of unity. Then $s^\omega = s^e c^{n\omega}$ for $c = 1$, and $\gamma = s^{(s^{-1})/n}$ is again a primitive nth root of unity by Lemma 2.1. So the image of s is a primitive nth root of unity. Hence φ is onto.

Finally, we show that $\ker \varphi = \text{Im}(j)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
A Galois extension T of S is the image of a Galois extension U of R iff $T \cong S \otimes_R U$. In that case, T is a Galois extension of R with group $\Delta \times G$; thus Δ and G are commuting groups of automorphisms of T. Conversely, if Δ lifts to a group of automorphisms of T commuting with G, then by the theorem of natural irrationality, T is a Galois extension of R with group G and $S \otimes_R T^\Delta \cong T$.

Therefore, since $\Delta = \langle \omega \rangle$ is cyclic of order m, T descends to R iff ω lifts to an automorphism of T, commuting with G, of order m.

Now ω has order m on T iff $z^m = z$, that is, $z^{m-1} \cdot e^m = e^x$, or $z^{m-1}c^x = 1$. Here m is the order of e mod m, since the homomorphism $\iota: \Delta \to (\mathbb{Z}/n\mathbb{Z})^*$ is 1-1. Thus, in particular, n divides $e_m - 1$, and ω has order m on T iff

$$1 = z^{e_m - 1}c^x = (z^n)^{(e_m - 1)/n}c^x = s^{(e_m - 1)/n}c^x = \gamma.$$

That completes the proof.

Corollary 3.2. Let p divide m, and let T be a Δ-normal Galois extension of S. Then there exists a Galois extension U of S with group G, $U = S[\omega]$, $\omega^n = \xi$, an nth root of unity, such that $T \cdot U$ descends to R.

Proof. Let $T = S[z]$, $z^n = s$, let $\gamma_s = \xi^{(e_m - 1)/n}$ for some nth root of unity ξ. Let $U = S[w]$ with $w^n = \xi^{-1}$. Then under the correspondence between $\text{Gal}(S, G)$ and $U(S)/U(S)^n$ of $T \cdot U$ corresponds to the class of ξ^{-1}, and by the proof of ontoness of φ above, $\varphi(U)$ is the class of $\xi^{-(e_m - 1)/n}$. Hence $\varphi(T \cdot U) = 1$ and $T \cdot U$ descends.

Corollary 3.3. If m is prime to p and T is a Δ-normal Galois extension of S, then T descends to R,

for $\mu_m = \mu_n$, hence φ is trivial.

Now we relate the question of descent to Stickelberger cohomology.

Theorem 3.4. $\text{Gal}_A(S, G)/\text{Im}(\iota) \cong H^2(\Delta, U(S)/U(S)^n)$.

Proof. We first show $\text{Gal}_A(S, G) \cong \ker \tau$. Let T be a Kummer extension, $T = S[z]$, $z^n = s$, $z^\sigma = \xi z$. Suppose ω lifts to a G-module automorphism of T. Then

$$(z^\omega)^\sigma = (z^\sigma)^\omega = (\xi z)^\omega = \xi^{t(\omega)}z^\omega.$$

Since

$$\{t \in T \mid t^\sigma = \xi^{t(\omega)}t\} = Sz^{t(\omega)},$$

therefore $z^\omega = z^{t(\omega)}c^\omega$ for some c in S, hence $s^{(e_m - 1)/n}c^\omega = c^\omega n$ in $U(S)^n$. Thus $s^{\omega - t(\omega)}$ is trivial in $U(S)/U(S)^n$.

Conversely, if $s^{\omega - t(\omega)}$ is in $U(S)^n$, let $T = S[z]$, $z^n = s$ and define ω on T by $z^\omega = z^{t(\omega)}c^\omega$. Since $(t(\omega), n) = 1$ and s, c are in $U(S)$, this defines an automorphism ω of T which commutes with G, so T is Δ-normal.

Now we show $\text{Im}(\iota) \cong \text{Im}(\eta)$. By (1.1) and Theorem 3.1 this follows immediately if p does not divide m. So assume p divides m.

First suppose T descends.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Mod $U(S)^n$, $c^\kappa = c^\vartheta$, where
\[\vartheta = \sum_{k=0}^{m-1} \omega^{-k} t(\omega^k) = \sum_{\delta \in \Delta} \delta^{-1} t(\delta). \]

Hence, if ω has order m on T and $t(\omega) = e$, then
\[s^{(e^{m-1})/n} c^\vartheta \equiv 1 \pmod{U(S)^n}. \]

Since ϑ divides m, we know, by Lemma 2.1, that $(e^{m-1})/n$ is relatively prime to n. Thus, if $(e^{m-1})/n h \equiv 1 \pmod{n}$, then $s \equiv (c^\vartheta)^h \pmod{U(S)^n}$.

Conversely, suppose s represents a class in $\text{Im} \eta$. Then $s \equiv d^\vartheta \pmod{U(S)^n}$; altering s by nth powers as needed, we may assume $s = d^\kappa$ for some d in $U(S)$, where $\kappa = \sum_{i=0}^{m-1} \omega^{m-i} e^i$. Then,
\[s^{\omega^m - e} = d^\kappa (\omega - e) = d^{\omega^m - e^m} = \left(d^{(1-e^m)/n} \right)^n \]
since ω has order m on S. Hence, $c = d^{(1-e^m)/n} = \xi$ for some nth root of unity.

But then $\gamma = s^{(e^{m-1})/n} c^\kappa$, and, substituting for s and c,
\[\gamma = d^{(e^{m-1})/n} d^{(1-e^m)/n} \xi \equiv \xi^e \in \mu_n^m. \]

By Theorem 3.1, T descends, completing the proof of Theorem 3.4.

Our computation of the Stickelberger 2-cohomology yields the following result, which may be of some arithmetic interest.

Corollary 3.5. Given an nth root of unity ξ in S, the equation $\xi \equiv d^\vartheta \pmod{U(S)^n}$ may be solved for d in S iff $\xi^{n/(m,n)} = 1$.

For if ϑ divides m (the only nontrivial case), the map from $H^2_2(\Delta, U(S)/U(S)^n)$ to μ_n/μ_n^n maps the class of s mod $U(S)^n$ to γ_s. If $s = \xi$, an nth root of unity, then $\gamma_s = \xi^{(e^{m-1})/n}$. Since $(e^m - 1)/n$ is prime to n, then γ_s is trivial, i.e. ξ is in $\text{Im} \eta$, iff ξ is in $\mu_n/(m,n)$.

Remark. The map j from $\text{Gal}(R, G)$ to $\text{Gal}(S, G)$ and its kernel has been studied from a cohomological viewpoint by Chase and Rosenberg [2]. The referee has kindly pointed out that Theorem 3.1 may also be viewed, in part, cohomologically. Namely, the spectral sequence
\[H^p(\Delta, \text{Ext}^q_Z(\mu_n, U(S))) \rightarrow \text{Ext}^q_Z(\mu_n, U(S)) \]
[9, p. 351] yields an exact sequence of low degree:
\[\cdots \text{Ext}^1_Z(\mu_n, U(S)) \rightarrow H^0(\Delta, \text{Ext}^1_Z(\mu_n, U(S))) \rightarrow H^2(\Delta, \text{Hom}_Z(\mu_n, U(S))) \rightarrow \cdots. \]

Now $\text{Hom}_Z(\mu_n, U(S))$ may be identified with Z/nZ (with trivial action), and, for Δ cyclic of order n, $H^2(\Delta, Z/nZ) \cong \mu_n/\mu_n^n$. On the other hand, from [8, Corollary 17.19, p. 126] we may identify $\text{Ext}^1_Z(\mu_n, U(S))$ and $H^0(\Delta, \text{Ext}^1_Z(\mu_n, U(S)))$ with $\text{Gal}(R, Z/nZ)$ and $\text{Gal}^1(S, Z/nZ)$, respectively. Thus the map $\varphi: \text{Gal}^1(S, G)/\text{Im}(j) \rightarrow \mu_n/\mu_n^n$ may be viewed as a realization of the sequence (3.6).
REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK, ALBANY, NEW YORK 12222