Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Cyclic Stickelberger cohomology and descent of Kummer extensions
HTML articles powered by AMS MathViewer

by Lindsay N. Childs
Proc. Amer. Math. Soc. 90 (1984), 505-510
DOI: https://doi.org/10.1090/S0002-9939-1984-0733396-2

Abstract:

Let $R$ be a field, $S = R[{\rm {\zeta }}]$, ${\rm {\zeta }}$ an $n$th root of unit, $\Delta = {\rm {Gal(}}S/R)$. The group of cyclic Kummer extensions of $S$ on which $\Delta$ acts, modulo those which descend to $R$, is isomorphic to a group of roots of unity and to a second group cohomology group of $\Delta$ whose definition involves a "Stickelberger element".
References
  • S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
  • S. U. Chase and Alex Rosenberg, A theorem of Harrison, Kummer theory, and Galois algebras, Nagoya Math. J. 27 (1966), 663–685. MR 210751
  • L. N. Childs, On normal Azumaya algebras and the Teichmuller cocycle map, J. Algebra 23 (1972), 1–17. MR 311701, DOI 10.1016/0021-8693(72)90042-7
  • S. Eilenberg and S. Mac Lane, Normality of algebras and the Teichmüller cocycle map, Trans. Amer. Math. Soc. 64 (1948), 1-20.
  • A. Fröhlich, Stickelberger without Gauss sums, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 589–607. MR 0450227
  • D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 1–14. MR 195921
  • Paulo Ribenboim, 13 lectures on Fermat’s last theorem, Springer-Verlag, New York-Heidelberg, 1979. MR 551363
  • S. Chase, Galois objects and extensions of Hopf algebras, Lecture Notes in Math., vol. 97, Springer-Verlag, New York, 1969.
  • Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F10, 13B05
  • Retrieve articles in all journals with MSC: 12F10, 13B05
Bibliographic Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 90 (1984), 505-510
  • MSC: Primary 12F10; Secondary 13B05
  • DOI: https://doi.org/10.1090/S0002-9939-1984-0733396-2
  • MathSciNet review: 733396