Cyclic Stickelberger cohomology and descent of Kummer extensions
HTML articles powered by AMS MathViewer
- by Lindsay N. Childs
- Proc. Amer. Math. Soc. 90 (1984), 505-510
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733396-2
- PDF | Request permission
Abstract:
Let $R$ be a field, $S = R[{\rm {\zeta }}]$, ${\rm {\zeta }}$ an $n$th root of unit, $\Delta = {\rm {Gal(}}S/R)$. The group of cyclic Kummer extensions of $S$ on which $\Delta$ acts, modulo those which descend to $R$, is isomorphic to a group of roots of unity and to a second group cohomology group of $\Delta$ whose definition involves a "Stickelberger element".References
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- S. U. Chase and Alex Rosenberg, A theorem of Harrison, Kummer theory, and Galois algebras, Nagoya Math. J. 27 (1966), 663–685. MR 210751
- L. N. Childs, On normal Azumaya algebras and the Teichmuller cocycle map, J. Algebra 23 (1972), 1–17. MR 311701, DOI 10.1016/0021-8693(72)90042-7 S. Eilenberg and S. Mac Lane, Normality of algebras and the Teichmüller cocycle map, Trans. Amer. Math. Soc. 64 (1948), 1-20.
- A. Fröhlich, Stickelberger without Gauss sums, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 589–607. MR 0450227
- D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 1–14. MR 195921
- Paulo Ribenboim, 13 lectures on Fermat’s last theorem, Springer-Verlag, New York-Heidelberg, 1979. MR 551363 S. Chase, Galois objects and extensions of Hopf algebras, Lecture Notes in Math., vol. 97, Springer-Verlag, New York, 1969.
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 505-510
- MSC: Primary 12F10; Secondary 13B05
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733396-2
- MathSciNet review: 733396