Cross products of strongly Morita equivalent $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Raúl E. Curto, Paul S. Muhly and Dana P. Williams
- Proc. Amer. Math. Soc. 90 (1984), 528-530
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733400-1
- PDF | Request permission
Abstract:
Suppose that a locally compact group $G$ acts on strongly Morita equivalent ${C^ * }$-algebras $A$ and $B$ and let $A \rtimes G$ and $B \rtimes G$ denote the corresponding crossed products. We present conditions which imply that $A \rtimes G$ and $B \rtimes G$ are also strongly Morita equivalent and we apply our result to improve upon known theorems concerning strong Morita equivalence between certain transformation group ${C^ * }$-algebras.References
- Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363. MR 463928, DOI 10.2140/pjm.1977.71.349
- Philip Green, $C^*$-algebras of transformation groups with smooth orbit space, Pacific J. Math. 72 (1977), no. 1, 71–97. MR 453917, DOI 10.2140/pjm.1977.72.71
- Iain Raeburn, On the Picard group of a continuous trace $C^{\ast }$-algebra, Trans. Amer. Math. Soc. 263 (1981), no. 1, 183–205. MR 590419, DOI 10.1090/S0002-9947-1981-0590419-3
- Marc A. Rieffel, Morita equivalence for operator algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 285–298. MR 679708 —, Applications of strong Morita equivalence to transformation group ${C^*}$-algebras, Proc Sympos. Pure Math., vol. 38, Part 1, Amer. Math. Soc., Providence, R.I., 1982, pp. 299-310.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 528-530
- MSC: Primary 46L40; Secondary 46L55, 46M15
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733400-1
- MathSciNet review: 733400