## Cross products of strongly Morita equivalent $C^{\ast }$-algebras

HTML articles powered by AMS MathViewer

- by Raúl E. Curto, Paul S. Muhly and Dana P. Williams PDF
- Proc. Amer. Math. Soc.
**90**(1984), 528-530 Request permission

## Abstract:

Suppose that a locally compact group $G$ acts on strongly Morita equivalent ${C^ * }$-algebras $A$ and $B$ and let $A \rtimes G$ and $B \rtimes G$ denote the corresponding crossed products. We present conditions which imply that $A \rtimes G$ and $B \rtimes G$ are also strongly Morita equivalent and we apply our result to improve upon known theorems concerning strong Morita equivalence between certain transformation group ${C^ * }$-algebras.## References

- Lawrence G. Brown, Philip Green, and Marc A. Rieffel,
*Stable isomorphism and strong Morita equivalence of $C^*$-algebras*, Pacific J. Math.**71**(1977), no. 2, 349–363. MR**463928**, DOI 10.2140/pjm.1977.71.349 - Philip Green,
*$C^*$-algebras of transformation groups with smooth orbit space*, Pacific J. Math.**72**(1977), no. 1, 71–97. MR**453917**, DOI 10.2140/pjm.1977.72.71 - Iain Raeburn,
*On the Picard group of a continuous trace $C^{\ast }$-algebra*, Trans. Amer. Math. Soc.**263**(1981), no. 1, 183–205. MR**590419**, DOI 10.1090/S0002-9947-1981-0590419-3 - Marc A. Rieffel,
*Morita equivalence for operator algebras*, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 285–298. MR**679708**
—,

*Applications of strong Morita equivalence to transformation group*${C^*}$

*-algebras*, Proc Sympos. Pure Math., vol. 38, Part 1, Amer. Math. Soc., Providence, R.I., 1982, pp. 299-310.

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**90**(1984), 528-530 - MSC: Primary 46L40; Secondary 46L55, 46M15
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733400-1
- MathSciNet review: 733400