A TWO WEIGHT INEQUALITY FOR THE FRACTIONAL INTEGRAL WHEN $p = n/\alpha$

ELEONOR HARBOURE, ROBERTO A. MACÍAS AND CARLOS SEGOVIA

Abstract. Let I_α be the fractional integral operator defined as

$$I_\alpha f(x) = \int f(y)|x-y|^{\alpha-n}dy.$$

Given a weight w (resp. v), necessary and sufficient conditions are given for the existence of a nontrivial weight v (resp. w) such that

$$\|vX_B\|_{\infty} \frac{1}{|B|} \int_B |I_\alpha f(x) - m_B(I_\alpha f)|dx \leq C \left(\int |f|^{\alpha/n}w \right)^{\alpha/n}$$

holds for any ball B such that $\|vX_B\|_{\infty} > 0$.

1. Introduction. We consider the fractional integral operator I_α, $0 < \alpha < n$, defined by

$$(1.1) \quad I_\alpha f(x) = \int_{\mathbb{R}^n} f(y)|x-y|^{\alpha-n}dy.$$

Necessary and sufficient conditions were obtained in [1] in order that given a weight v (resp. w) there exists a nontrivial weight w (resp. v) satisfying

$$\left[\int |I_\alpha f(x)|^q v(x)dx \right]^{1/q} \leq \left(\int |f(x)|^p w(x)dx \right)^{1/p}$$

for $1 < p, q < \infty$, $1/q > 1/p - \alpha/n$. For the case $p = 1$, $q = n/(n - \alpha)$ weights satisfying a weak type inequality were characterized. Our purpose now is to study the limiting case $p = n/\alpha$, $q = \infty$.

It is not difficult to verify that, except for trivial cases, I_α is not a bounded operator from $L^{n/\alpha}(wdx)$ into $L^\infty(vdx)$. To see this we assume the set $\{x: v(x) > 0\} \cap \{x: w(x) < \infty\}$ has positive Lebesgue measure. Then if B_1 is the unit ball we may assume that for some N the set $G = \{x: v(x) > 0\} \cap \{x: w(x) < N\} \cap B_1$ has positive measure and zero as a point of density. Take $f(y) = \chi_G(y)|y|^{-\beta}$, with $\beta < \alpha$. Then

$$\int |f|^{\alpha/n}w dy \leq N \int_{B_1} |y|^{-\beta n/\alpha}dy \leq \frac{N\omega_n \alpha}{n(\alpha - \beta)}.$$

On the other hand, since $I_\alpha f(x)$ is continuous at zero, we have

$$\|I_\alpha f\|_{L^\infty(v)} \geq I_\alpha f(0) = \int_G |y|^{-\beta} |y|^{\alpha-n}dy \geq \int_{G \cap B_\epsilon} |y|^{\alpha-\beta-n}dy,$$
where \(r \) is such that \(|B_{i} \cap G|/|B_{i}| \geq 3/4 \), for every \(s \leq r \). We write
\[
A_{k} = \{ y : r4^{-(k+1)/n} \leq |y| < r4^{-k/n} \}
\]
and
\[
C_{k} = \{ y : 2^{-1/n}r4^{-k/n} \leq |y| < r4^{-k/n} \}.
\]
Then \(C_{k} \) is contained in \(A_{k} \) and
\[
|G \cap A_{k}| \geq 2 \omega_{n}r^{n}4^{-(k+1)} = |C_{k}|.
\]
Taking into account that \(|y|^\alpha \beta - n \) is a decreasing function, we have
\[
\int_{G \cap B_{r}} |y|^\alpha \beta - n \, dy = \sum_{k=0}^{\infty} \int_{G \cap A_{k}} |y|^\alpha \beta - n \, dy \geq \sum_{k=0}^{\infty} \int_{C_{k}} |y|^\alpha \beta - n \, dy
\]
\[
= \omega_{n} \cdot \frac{r^{\alpha - \beta}}{\alpha - \beta} \cdot \frac{1}{(1 + 2^{(\beta - \alpha)/n})}.
\]
Therefore, if \(\|I_{\alpha,f}\|_{L^{\infty}(v)} \leq C\|f\|_{L^{\infty}(w)} \) were true, we would have
\[
\frac{r^{\alpha - \beta}}{\alpha - \beta} \leq C(2^{(\beta - \alpha)/n} + 1)(\alpha - \beta)^{1 - \alpha/n}
\]
for any \(\beta < \alpha \). Letting \(\beta \) go to \(\alpha \), we arrive at a contradiction.

Moreover, as is well known, the function \(f(x) = (|x|^{\alpha} \log |x|)^{-1} \chi_{(2,\infty)}(|x|) \) belongs to \(L^{n/\alpha}(dx) \), yet the integral (1.1) defining \(I_{\alpha,f}(x) \) is divergent for every \(x \).

However, if \(f \) belongs to \(L^{n/\alpha}(dx) \) and has compact support, \(I_{\alpha,f}(x) \) is finite for almost every \(x \). Furthermore, given any ball \(B = B(z,r) \) the expression
\[
I_{\alpha}^{B,f}(x) = \int_{B} f(y)|x - y|^{\alpha - n} \, dy + \int_{CB} f(y)[|x - y|^{\alpha - n} - |y - z|^{\alpha - n}] \, dy
\]
is well defined for every \(f \) in \(L^{n/\alpha}(dx) \) and coincides almost everywhere (a.e.) with \(I_{\alpha}f \) up to a finite constant \(C_{B} = \int_{CB} f(y)|y - z|^{\alpha - n} \, dy \), if in addition, \(f \) has compact support.

These observations lead us to study, as in [2], the weights satisfying the substitute inequality
\[
(1.2) \quad \|v \chi_{B}\|_{\infty} \frac{1}{|B|} \int_{B} |I_{\alpha,f}(x)| \, dx \leq \left(\int |f|^{n/\alpha} w \, dx \right)^{\alpha/n},
\]
for any ball \(B \) such that \(\|v \chi_{B}\|_{\infty} > 0 \) and \(f \) with compact support. We are using the notation \(|E| \) to indicate the Lebesgue measure of the set \(E \) and \(m_{E}(g) \) the average of \(g \) over \(E \), i.e. \(m_{E}(g) = \frac{1}{|E|} \int_{E} g \, dy \).

2. The results. We begin by studying those weights \(w \) for which (1.2) holds for some nontrivial weight \(v \). We first prove the following

Lemma 1. Let \(v \) and \(g \) be measurable functions satisfying
\[
(2.1) \quad \|v \chi_{S}\|_{\infty} \frac{1}{|S|} \int_{S} |g - m_{S}(g)| \leq C
\]
for any ball \(S \) such that \(\|v \chi_{S}\|_{\infty} > 0 \). Then if \(B \) and \(B^{*} \) are two balls such that
$|B| = |B^*|$ and $\|v \chi_B\|_\infty > 0$, we have

$$\|v \chi_B\|_\infty \frac{1}{|B|} \int_B |g - m_{B^*}(g)| \leq 3C \frac{|\tilde{B}|}{|B|}$$

where \tilde{B} is any ball containing $B \cup B^*$.

Proof.

$$\|v \chi_B\|_\infty \frac{1}{|B|} \int_B |g - m_{B^*}(g)| \leq \|v \chi_B\|_\infty \left[\frac{1}{|B|} \int_B |g - m_B(g)| + |m_B(g) - m_{B^*}(g)| + |m_{B^*}(g) - m_{B^*}(g)| \right]$$

$$\leq C + \|v \chi_{B^*}\|_\infty \left[\frac{1}{|B|} \int_B |g - m_{B^*}(g)| + \frac{1}{|B^*|} \int_B |g - m_{B^*}(g)| \right]$$

$$\leq C + 2 \frac{|\tilde{B}|}{|B|} \frac{1}{|B^*|} \int_B |g - m_{B^*}(g)| \leq 3 \frac{|\tilde{B}|}{|B|} C.$$

From this lemma we can easily obtain a necessary condition on the weight w for (1.2) to hold.

Theorem 1. Let w be a nonnegative function, finite on a set of positive measure and such that there exists a nonnegative function ν, not identically zero, satisfying (1.2) for any bounded function with compact support. Then, for any R large enough, we have

$$\int \frac{w(x)^{-a/(n-a)}}{\nu(x)} dx \leq CR^n.$$

Proof. Let $w(x) = w(x) + \epsilon$ and define $f_R = w^{-a/(n-a)} \chi_{B_R}$ for R large enough so that $\|v \chi_{B_R}\|_\infty > 0$. Then f_R is a bounded function with compact support and

$$\int f_R^{-a/(n-a)}w = \int_{B_R} w^{-n/(n-a)} \leq \int_{B_R} w^{-a/(n-a)} < \infty.$$

Let us take $B_R^* = B(z, R)$, the ball centered at z of radius R, with $|z| = 5R$. Clearly B_R and B_R^* are contained in $\tilde{B}_R = B(0, 6R)$ and $K = |\tilde{B}_R|/|B_R|$ is independent of R. Also, substituting f_R for f in (1.2) we obtain that $g_R = I_\alpha(f_R)$ satisfies (2.1) with a constant $C_R = (\int_{R} w^{-a/(n-a)})^{1/a}$. Hence, we can apply Lemma 1 to conclude

$$\|v \chi_{B_R}\|_\infty \frac{1}{|B_R|} \int_{B_R} |g_R - m_{B_R^*}(g_R)| \leq 3K \left(\int_{B_R} w^{-a/(n-a)} \right)^{1/a}.$$

Now for $x \in B_R$ we have

$$g_R(x) - m_{B_R^*}(g_R) \geq \frac{1}{|B_R^*|} \int_{B_R^*} \int_{B_R} f_R(y) ||x - y||^{a-n} - ||t - y||^{a-n} dy dt$$

$$\geq \frac{1}{|B_R^*|} \int_{B_R^*} \int_{B_R} f_R(y) [(2R)^{a-n} - (3R)^{a-n}] dy dt$$

$$\geq CR^{a-n} \int_{B_R} w^{-a/(n-a)} dy.$$
with $C > 0$ and independent of R. Therefore, since we can always assume $\|v X_{B_R}\|_{\infty} \geq 1$ for R large enough, we obtain

$$R^{a-n} \int_{B_R} w^{-a/(n-a)} \leq C \left(\int_{B_R} w^{-a/(n-a)} \right)^{a/n},$$

which implies, for R large enough,

$$\int_{B_R} w^{-a/(n-a)} \leq CR^n.$$

Now letting ε go to zero we obtain the desired conclusion. \square

We now want to study the behavior of the fractional integral operator acting on functions of $L^{n/a}(w \, dx)$ for a weight w satisfying (2.2). As in the case of Lebesgue measure, we can show that if $w^{-a/(n-a)}$ is merely locally integrable, the integral defining $I_{a,f}$ is finite almost everywhere for any $f \in L^{n/a}(w \, dx)$ having compact support. In fact, if $B = B(0,R)$ is a ball containing the support of f and $f \geq 0$, we have

$$\int_B \int f(y) |x-y|^{a-n} \, dy \, dx = \int_f(y) \int_B |x-y|^{a-n} \, dx \, dy \leq \int_f(y) \int_{B(y,2R)} |x-y|^{a-n} \, dx \, dy \leq CR^a \left(\int_B f^{n/a} w \right)^{a/n} \left(\int_B w^{-a/(n-a)} \right)^{1-a/n} < \infty.$$

Therefore $I_{a,f}$ is finite a.e.

The next theorem shows that condition (2.2) on w allows us to construct a weight v satisfying (1.2).

Theorem 2. Let w be a nonnegative function, finite on a set of positive measure, satisfying (2.2) for $R \geq 1$. Then there exists a nonnegative function v, not identically zero, such that (1.2) holds for any ball B satisfying $\|v X_B\|_{\infty} > 0$, and for any function f with compact support.

Proof. Let the maximal function be denoted by

$$M^*g(x) = \sup \left\{ \frac{1}{|B(z,r)|} \int_{B(z,r)} |g(y)| \, dy : x \in B(z,r), 0 < r \leq 2 \right\}.$$

Since $w^{-a/(n-a)}$ is a locally integrable function, $M^*(w^{-a/(n-a)})$ is finite a.e. We may assume that for N large enough the set $E = B(0,1) \cap \{x : M^*(w^{-a/(n-a)})(x) < N\}$ has positive measure. We claim that the weight $v = \chi_E$ satisfies (1.2).

Let f be a function in $L^{n/a}(w \, dx)$ with compact support. In order to prove (1.2) we need only consider balls B such that $B \cap E \neq \emptyset$. If $B = B(z,R)$ is one of those balls, denoting by \tilde{B} the ball $B(z,4R)$, we write

$$I_{a,f}(x) = I^1_{a,f}(x) + I^2_{a,f}(x) = \int_B f(y) |x-y|^{a-n} \, dy + \int_{CB} f(y) |x-y|^{a-n} \, dy.$$
For $I_a^1 f$ we have
\[
\frac{1}{|B|} \int_B |I_a^1 f(x) - m_B(I_a^1 f)| dx \leq \frac{2}{|B|} \int_B \int_B |f(y)||x-y|^{\alpha-n} dy dx
\]
\[
\leq \frac{2}{|B|} \int_B |f(y)| \int_{B(y,5R)} |x-y|^{\alpha-n} dx dy
\]
\[
\leq CR^{\alpha-n} \left(\int |f|^{\alpha/n} w \right)^{\alpha/n} \left(\int_B w^{-\alpha/(n-\alpha)} \right)^{1-\alpha/n}.
\]
If $4R \geq 1$, since $E \cap B \neq \emptyset$, it follows that $\hat{B} \subset B(0,9R)$ and, therefore, by hypothesis
\[
\int_B w^{-\alpha/(n-\alpha)} \leq CR^n.
\]
On the other hand, if $4R \leq 1$ and $t \in E \cap B$, we get
\[
\int_B w^{-\alpha/(n-\alpha)} \leq CR^*M^*(w^{-\alpha/(n-\alpha)})(t) \leq CNR^n.
\]
So, in any case, we obtain
\[
(2.3) \quad \frac{1}{|B|} \int_B |I_a^1 f(x) - m_B(I_a^1 f)| dx \leq C \left(\int |f|^{\alpha/n} w \right)^{\alpha/n}.
\]
We now estimate $I_a^2 f$:
\[
\int_B |I_a^2 f(x) - m_B(I_a^2 f)| dx \leq \frac{1}{|B|} \int_B \int_B \int_{CB} |f(y)||x-y|^{\alpha-n} - |t-y|^{\alpha-n} dy dt dx.
\]
But, using the mean value theorem and the fact that $||x-y| - |t-y|| < 2R$ for x and t in B and y in CB, it follows that
\[
||x-y|^{\alpha-n} - |t-y|^{\alpha-n}| \leq CR|z - y|^{\alpha-n-1}.
\]
Therefore
\[
(2.4) \quad \frac{1}{|B|} \int_B |I_a^2 f(x) - m_B(I_a^2 f)| dx \leq CR \int_{CB} |f(y)||z-y|^{\alpha-n-1} dy
\]
\[
\leq CR \left(\int |f|^{\alpha/n} w \right)^{\alpha/n} \left(\int_{CB} w(y)^{-\alpha/(n-\alpha)}|z-y|^{-\beta} dy \right)^{1-\alpha/n},
\]
where $\beta = 1 + 1/(n-\alpha) > 1$. For the last integral we have
\[
I = \int_{|z-y| \geq 4R} w(y)^{-\alpha/(n-\alpha)}|z-y|^{-\beta} dy \leq \sum_{k=0}^{\infty} (2^k R)^{-\beta} \int_{|z-y| \leq 2^{k+1} R} w(y)^{-\alpha/(n-\alpha)} dy.
\]
If $|z| \geq 2$, since $B \cap E \neq \emptyset$, we have $R \geq |z|/2 \geq 1$ and, hence,
\[
\int_{|z-y| \leq 2^{k+1} R} w(y)^{-\alpha/(n-\alpha)} dy \leq \int_{|y| \leq 2^{k+2} R} w(y)^{-\alpha/(n-\alpha)} dy \leq C(2^k R)^n.
\]
Moreover, if $|z| \leq 2$ but k is such that $2^k R \geq 1$, the last estimate also holds. On the other hand, if $2^k R \leq 1$ and $t \in E \cap B$, we obtain

$$\int_{|z-v| \leq 2^k R} w(y)^{-\alpha/(n-\alpha)} \, dy \leq \left(2^k R\right)^n M^*(w^{-\alpha/(n-\alpha)})(t) \leq CN(2^k R)^n.$$

Therefore

$$I \leq CR^{-n/(n-\alpha)} \sum_{k=0}^{\infty} 2^{-kn/(n-\alpha)} \leq CR^{-n/(n-\alpha)}.$$

Replacing this estimate in (2.4) gives

(2.5) $\frac{1}{|B|} \int_B |I_a^2 f(x) - m_B(I_a^2 f)| \, dx \leq C \left(\int |f|^{n/\alpha} w \right)^{\alpha/n}.$

Taking into account that $\|v\|_\infty = 1$, the estimates (2.3) and (2.5) prove the claim.

Extension of I_a to the whole space $L^{n/\alpha}(w \, dx)$. Let w be a weight satisfying (2.2). As we have seen, the integral (1.1), defining the fractional integral $I_a f$, is absolutely convergent for any function f in $L^{n/\alpha}(w \, dx)$ with compact support. Let v be a weight satisfying (1.2). The previous theorem shows there always exists such a v. Then I_a can be considered as a bounded operator from a dense subspace of $L^{n/\alpha}(w \, dx)$ into a weighted version of BMO, denoted BMO(v). The norm on this space is given by

$$\|g\|_B = \sup_B \|\chi_B v\|_\infty m_B (\|g - m_B(g)\|),$$

where the sup is taken over the balls B such that $\|\chi_B v\|_\infty > 0$. Therefore I_a can be extended as a bounded operator from $L^{n/\alpha}(w \, dx)$ into BMO(v).

Furthermore, by arguments similar to those used in the proof of Theorem 2, it is possible to give an explicit expression for $I_a f$ as an element in the space BMO(v), valid for any function f in $L^{n/\alpha}(w \, dx)$. In order to do this, assume w satisfies (2.2) for $R \geq 1$. For any $r > 0$ we define

$$I_r f(x) = \int_{|y| < r} f(y)|x - y|^{-\alpha - n} \, dy + \int_{|y| \geq r} f(y)((|x - y|^{\alpha - n} - |y|^{\alpha - n}) \, dy.$$

Let us show that for any f in $L^{\alpha/n}(w \, dx)$ this expression is finite a.e. For any R large enough we can write

$$I_r f(x) = I_a(f \chi_{B_r})(x) + \int_{|y| \geq R} f(y)((|x - y|^{\alpha - n} - |y|^{\alpha - n}) \, dy - \int_{|y| < R} f(y)|y|^{\alpha - n} \, dy.$$

By the assumption on f and w, the last integral is a finite constant. Moreover, for any x such that $2|x| < R$, we have

$$\left| \int_{|y| \geq R} f(y)((|x - y|^{\alpha - n} - |y|^{\alpha - n}) \, dy \right| \leq CR \int_{|y| \geq R} |f(y)| |y|^{\alpha - n - 1} \, dy \leq C\|f\|_{L^{\alpha/n}(w)} \left(\int_{|y| \geq R} w(y)^{-\alpha/n} \, dy \right)^{\alpha/n}.$$
with $\beta = 1 + 1/(n - \alpha)$. Proceeding as in the proof of Theorem 2 we see that the last integral is finite. This proves our assertion. Moreover, we have also shown that $I_R f$ and I_f coincide a.e. up to a finite constant.

From these remarks we can conclude that for any $r > 0$ and any f in $L^{n/\alpha}(\nu dx)$, the function $I_r f$ coincides in $\text{BMO}(\nu)$ with $I_{\alpha}(f)$ defined by density arguments, providing the expression we were looking for. \(\square\)

We now consider the problem of characterizing those weights ν for which there exists a nontrivial weight ν satisfying (1.2).

Theorem 3. Let ν be a nonnegative function different from zero on a set of positive measure. Then there exists a nonnegative function ν finite on a set of positive measure and satisfying (1.2) for any bounded function f with compact support if and only if the function ν satisfies $|\nu(x)| \leq C(1 + |x|)^{n - \alpha}$.

Proof. Assume (1.2) holds for some ν. Let $f(x) = \chi_E(x)$, where

$$E = B(0,1) \cap \{x : \nu(x) < N\},$$

for N large enough. By using translations if necessary, we can assume $|E| > 0$. Let $B = B(0,R)$ with $R \geq 1$ and large enough so that $\|\nu\chi_B\|_\infty > 0$. Let B^* be the ball $B(z,R)$ where z is such that $|z| = 5R$, and let \hat{B} be the ball centered at zero with radius $6R$. Therefore, if (1.2) is satisfied, we can apply Lemma 1 to $g = I_{\alpha} f$ and obtain

$$\|\nu\chi_B\|_\infty \leq \frac{1}{|B|} \int_B |I_{\alpha} f(y) - m_B(I_{\alpha} f)| dy \leq K$$

for a constant K independent of R. Proceeding now as in the proof of Theorem 1 we obtain that, for any R large enough, $\|\nu\chi_B\|_\infty \leq CR^{n-\alpha}$, which implies $|\nu(x)| \leq C(1 + |x|)^{n-\alpha}$ a.e.

Conversely, we will show that (1.2) holds for $\nu(x) = (1 + |x|)^{n-\alpha}$ and $\nu(x) = (1 + |x|)^{(n+\alpha)(n-\alpha)/\alpha}$. Let $B = B(z,R)$ be any ball and $\hat{B} = B(z,4R)$. As in the proof of Theorem 2 we write

$$I_{\alpha} f(x) = I_{\alpha}^1 f(x) + I_{\alpha}^2 f(x) = \int_B f(y) |x-y|^{\alpha-n} dy + \int_{CB} f(y) |x-y|^{\alpha-n} dy$$

for a bounded function f with compact support. We have already seen that for a function of this sort we have the estimate

$$\frac{1}{|B|} \int_B |I_{\alpha} f(x) - m_B(I_{\alpha} f)| dx \leq C \left(R^{-n} \int_B w^{-\alpha/(n-\alpha)} \right)^{1-\alpha/n} \left(\int f^\alpha w \right)^{\alpha/n}.$$

Consider

$$A(z,R) = (1 + |z| + R)^{n-\alpha} \left(R^{-n} \int_B w^{-\alpha/(n-\alpha)} \right)^{1-\alpha/n}.$$

We want to show it is bounded independently of z and R. From our choice of ν it follows that

$$M \left(w^{-\alpha/(n-\alpha)} \right)(x) \leq C(1 + |x|)^{-n},$$
where M is the usual Hardy-Littlewood maximal function operator. In particular $R^{-n} \int_B w^{-\alpha/(n-\alpha)} \lesssim C$. Thus, we need only consider $|z| + R \geq 1$. Now, if $|z| \geq R$,

$$A(z, R) \leq C|z|^{\alpha} \left[M(w^{-\alpha/(n-\alpha)})(z) \right]^{1-\alpha/n} \leq C,$$

and if $|z| \leq R$,

$$A(z, R) \leq CR^{\alpha-\alpha} \left(R^{-n} \int w^{-\alpha/(n-\alpha)} \right)^{1-\alpha/n} \leq C.$$

Therefore

$$(2.6) \quad \|v\chi_B\|_{\infty} \frac{1}{|B|} \int_B \left| I^1_a f(x) - m_B(I^1_a f) \right| dx \leq CA(z, R) \left(\int |f|^{n/\alpha} w \right)^{\alpha/n}$$

$$\leq C \left(\int |f|^{n/\alpha} w \right)^{\alpha/n}.$$

We also proved (see 2.4) that if $\beta = 1 + 1/(n - \alpha)$, then

$$\frac{1}{|B|} \int_B \left| I^2_a f(x) - m_B(I^2_a f) \right| dx \leq CR \left(\int |f|^{n/\alpha} w \right)^{\alpha/n} \left(\int_{|z-y| \geq 4R} w(y)^{-\alpha/(n-\alpha)} |z-y|^{-n\beta} dy \right)^{1-\alpha/n}.$$

From our choice of w we have the estimates

$$\int_{|z-y| \geq 4R} w(y)^{-\alpha/(n-\alpha)} |z-y|^{-n\beta} dy \leq C \sum_{k=2}^{\infty} (2^k R)^{-n\beta} \int_{|z-y| < 2^{k+1} R} w(y)^{-\alpha/(n-\alpha)} dy$$

$$\leq CM \left(w^{\alpha/(n-\alpha)}(z) R^{-n(\beta-1)} \sum_{k=2}^{\infty} 2^{n(1-\beta)k} \right)$$

$$\leq CR^{-n/(n-\alpha)}(1 + |z|)^{-n}$$

and

$$\int_{|z-y| \geq 4R} w(y)^{-\alpha/(n-\alpha)} |z-y|^{-n\beta} dy \leq CR^{-n} \int w(y)^{-\alpha/(n-\alpha)} dy$$

$$\leq CR^{-n(n-\alpha+1)/(n-\alpha)}.$$

Using these estimates for $|z| \geq R$ and $|z| \leq R$, respectively, we obtain

$$(2.7) \quad \|v\chi_B\|_{\infty} \frac{1}{|B|} \int_B \left| I^2_a f(x) - m_B(I^2_a f) \right| dx \leq C \left(\int |f|^{n/\alpha} w \right)^{\alpha/n}.$$

Combining (2.6) and (2.7), (1.2) follows. □

REFERENCES

PROGRAMA ESPECIAL DE MATEMATICA APLICADA, CONICET, GÜEMES 3450, CC91, 3000 SANTA FE, ARGENTINA (Current address of E. Harboure and R. Macias)

FACULTAD DE CIENCIAS EXACTAS, FISICAS Y NATURALES, UNIVERSIDAD DE BUENOS AIRES, 1428–BUENOS AIRES, ARGENTINA (Current address of C. Segovia)