Sturmian theory and disconjugacy of second order systems
HTML articles powered by AMS MathViewer
- by Fozi M. Dannan
- Proc. Amer. Math. Soc. 90 (1984), 563-566
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733406-2
- PDF | Request permission
Abstract:
A generalization of the Sturm Comparison Theorem is given to second order linear systems. In addition, an analogue to Sternberg disconjugacy criterion for nonselfadjoint second order linear systems is given.References
- Shair Ahmad and Alan C. Lazer, On the components of extremal solutions of second order systems, SIAM J. Math. Anal. 8 (1977), no. 1, 16â23. MR 430409, DOI 10.1137/0508002
- Shair Ahmad and A. C. Lazer, An $N$-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems, SIAM J. Math. Anal. 9 (1978), no. 6, 1137â1150. MR 512517, DOI 10.1137/0509092
- Shair Ahmad and Alan C. Lazer, A new generalization of the Sturm comparison theorem to selfadjoint systems, Proc. Amer. Math. Soc. 68 (1978), no. 2, 185â188. MR 470327, DOI 10.1090/S0002-9939-1978-0470327-4 R. L. Sternberg, Variational methods and nonoscillation theorems for systems of differential equations, Ann. Polon. Math. 21 (1969), 175-194. J. C. F. Sturm, MĂ©moire sur les Ă©quations diffĂ©rentielles linĂ©aires de second ordre, J. Math. Pures Appl. 1 (1836), 106-186.
- Aurel Wintner, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368â380. MR 42005, DOI 10.2307/2372182
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 563-566
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733406-2
- MathSciNet review: 733406