A CHARACTERIZATION OF SPECTRAL OPERATORS ON HILBERT SPACES

KÔTARÔ TANAHASHI AND TAKASHI YOSHINO

ABSTRACT. In [8] Wadhwa shows that if a bounded linear operator T on a complex Hilbert space H is a decomposable operator and has the condition (I), then T is a spectral operator with a normal scalar part. In this paper, by using this result, we show that a weak decomposable operator T is a spectral operator with a normal scalar part if and only if T satisfies the assertion that (1) T has the conditions (C) and (I) or that (2) every spectral maximal space of T reduces T. This result improves [1, 6 and 7]. From this result, we can get a characterization of spectral operators, but this result does not hold in complex Banach space (see Remark 2).

1. Preliminaries. Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear operators on H. Let $\sigma(T)$ be the spectrum of T and Lat(T) be the family of all invariant subspaces of T. $Y \in Lat(T)$ is called a spectral maximal space of T if Y contains all $Z \in \text{Lat}(T)$ such that $\sigma(T|Z) \subset \sigma(T|Y)$. Let SM(T) be the family of all spectral maximal spaces of T. $T \in B(H)$ is called a decomposable (resp., weak decomposable) operator if for every finite open covering $\{G_1, \ldots, G_n\}$ of $\sigma(T)$, there exists a system $\{Y_1, \ldots, Y_n\}$ in SM(T) such that (1) $H = Y_1 + \cdots + Y_n$ (resp., $H = \overline{Y_1 + \cdots + Y_n}$ where \overline{Y} denotes the closure of $Y \subset H$) and (2) $\sigma(T | Y_i) \subset$ G_i for $i = 1, \dots, n$. $T \in B(H)$ is said to have the single valued extension property or the condition (A) if there exists no nonzero analytic function f such that $(z - T)f(z) \equiv 0$. If $T \in B(H)$ has the condition (A), then for every $x \in H$, there exists a maximal open set $\rho_T(x)$ in the complex plane C for which there exists the unique analytic function x(z) such that $(z - T)x(z) \equiv x$ on $\rho_T(x)$. Let $\sigma_T(x) =$ $\rho_T(x)^c$ and $H_T(E) = \{x \in H | \sigma_T(x) \subset E\}$ for a subset E of C. $T \in B(H)$ with (A) is said to have the condition (B) if there exists K > 0 such that $||x|| \le K ||x + y||$ for all x and y in H with $\sigma_T(x) \cap \sigma_T(y) = \emptyset$. T with (A) is said to have the condition (C) if $H_T(F)$ is closed for all closed sets F in C. $T \in B(H)$ with (A) and (C) is said to have the condition (I) if $\sigma_T(P_F x) \subset \sigma_T(x)$ for all closed sets F in C and for all $x \in H$ where P_F is the orthogonal projection of H onto $H_T(F)$.

It is known that weak decomposable operators have the condition (A) and that decomposable operators have the conditions (A) and (C) (see [2 and 5]). And if $T \in B(H)$ has the conditions (A) and (C), then $H_T(F) \in SM(T)$ and $\sigma(T|H_T(F)) \subset F$ for all closed sets F in C (see [2]).

©1984 American Mathematical Society 0002-9939/84 \$1.00 + \$.25 per page

Received by the editors May 9, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47B20, 47B40.

Key words and phrases. Spectral operator, decomposable operator, weak decomposable operator.

2. Main results.

LEMMA 1. If $T \in B(H)$ is a weak decomposable operator and if every spectral maximal space of T reduces T, then T has the condition (C).

PROOF. Let F be a closed set in C, and G be any open set containing F. Since $\{F^c, G\}$ is an open covering of $\sigma(T)$, there exist Y_1 and Y_2 in SM(T) such that $H = \overline{Y_1 + Y_2}$, $\sigma(T | Y_1) \subset F^c$ and $\sigma(T | Y_2) \subset G$. If $x \in H_T(F)$, there exist $x_n^i \in Y_i$ for i = 1, 2 such that $x = \lim_{n \to \infty} (x_n^1 + x_n^2)$. Let P be the orthogonal projection of H onto Y_1 . Then we have PT = TP, hence $\sigma_T(Px) \subset \sigma_T(x) \cap \sigma(T | Y_1) \subset F \cap F^c = \emptyset$. This implies Px = 0. Hence $0 = Px = \lim_{n \to \infty} (Px_n^1 + Px_n^2) = \lim_{n \to \infty} (x_n^1 + Px_n^2)$, and so

$$x = \lim_{n \to \infty} (x_n^1 + x_n^2) - \lim_{n \to \infty} (x_n^1 + Px_n^2) = \lim_{n \to \infty} (x_n^2 - Px_n^2).$$

Since spectral maximal spaces are hyperinvariant (see [2, Proposition 1.3.2]), we have $x \in Y_2$. Hence $H_T(F) \subset Y_2 \subset H_T(\sigma(T|Y_2)) \subset H_T(G)$. Since G is any open set containing F, we have $H_T(F) \subset \cap Y_2 \subset \cap H_T(G) = H_T(\cap G) = H_T(F)$. Thus $H_T(F) = \cap Y_2$ is closed.

LEMMA 2. Let $T \in B(H)$ be a weak decomposable operator with (B) and let $H_T(F)$ reduce T for all closed sets F in C. Then T has the condition (C).

PROOF. Let F be a closed set in C, and G any open set containing F. Since $\{F^c, G\}$ is an open covering of $\sigma(T)$, there exist Y_1 and Y_2 in SM(T) such that $H = \overline{Y_1 + Y_2}$, $\sigma(T | Y_1) \subset F^c$ and $\sigma(T | Y_2) \subset G$. If $x \in H_T(F)$, there exist $x_n^i \in Y_i$ for i = 1, 2 such that $x = \lim_{n \to \infty} (x_n^1 + x_n^2)$. Let P be the orthogonal projection of H onto $\overline{H_T(F)}$. Then PT = TP and $x = Px = \lim_{n \to \infty} (Px_n^1 + Px_n^2)$. Since Y_1 is hyperinvariant, we have $Px_n^1 \in Y_1 \cap \overline{H_T(F)} \subset H_T(F^c) \cap \overline{H_T(F)}$. If $y \in H_T(F^c) \cap \overline{H_T(F)}$, then $y = \lim_{n \to \infty} y_n$ where $y_n \in H_T(F)$ and $\sigma_T(y) \cap \sigma_T(-y_n) \subset F^c \cap F = \emptyset$. Hence y = 0because $||y|| \le K ||y - y_n|| \to 0$ $(n \to 0)$ by the condition (B). Hence $Px_n^1 = 0$, and so $x = \lim_{n \to \infty} Px_n^2 \in Y_2$ because Y_2 is hyperinvariant. Thus $H_T(F) \subset Y_2 \subset H_T(G)$. The rest of the proof is similar to the proof of Lemma 1.

LEMMA 3. Let $T \in B(H)$ be a weak decomposable operator. If T has the conditions (C) and (I), then T is a decomposable operator.

PROOF. We show $H = H_T(F) + H_T(\overline{F^c})$ for all closed sets F in \mathbb{C} . Then it is easy to show that T is a decomposable operator. Since $H = H_T(F) \oplus H_T(F)^{\perp}$, we have only to show $H_T(F)^{\perp} \subset H_T(\overline{F^c})$. Let G be any open set containing F. Since $\{F^c, G\}$ is an open covering of $\sigma(T)$, there exist Y_1 and Y_2 in SM(T) such that $H = \overline{Y_1 + Y_2}$, $\sigma(T|Y_1) \subset F^c$ and $\sigma(T|Y_2) \subset G$. If $x \in H_T(\overline{G})^{\perp}$, there exist $x_n^i \in Y_i$ for i = 1, 2such that $x = \lim_{n \to \infty} (x_n^1 + x_n^2)$. Hence

$$0 = P_{\overline{G}}x = \lim_{n \to \infty} \left(P_{\overline{G}}x_n^1 + P_{\overline{G}}x_n^2 \right) = \lim_{n \to \infty} \left(P_{\overline{G}}x_n^1 + x_n^2 \right),$$

and so

$$x = \lim_{n \to \infty} \left(x_n^1 + x_n^2 \right) - \lim_{n \to \infty} \left(P_{\overline{G}} x_n^1 + x_n^2 \right) = \lim_{n \to \infty} \left(x_n^1 - P_{\overline{G}} x_n^1 \right).$$

Since $\sigma_T(P_{\overline{G}}x_n^1) \subset \sigma_T(x_n^1) \subset \sigma(T | Y_1) \subset F^c$, we have $x_n^1 - P_{\overline{G}}x_n^1 \in H_T(\overline{F^c})$ and so $x \in H_T(\overline{F^c})$. Hence $H_T(\overline{G})^\perp \subset H_T(\overline{F^c})$, and so $H_T(\overline{G}) \supset H_T(\overline{F^c})^\perp$. Since G is any open set containing F, we have $H_T(F) = H_T(\cap \overline{G}) = \cap H_T(\overline{G}) \supset H_T(\overline{F^c})^\perp$. Thus $H_T(F)^\perp \subset H_T(\overline{F^c})$.

THEOREM. If $T \in B(H)$, then the following assertions are equivalent.

(1) T = N + Q where $N \in B(H)$ is a normal operator and Q is a quasinilpotent operator commuting with N.

(2) T is a weak decomposable operator with (C) and (I).

(3) T is a weak decomposable operator and every spectral maximal space of T reduces T.

(4) T is a weak decomposable operator with (B), and $\overline{H_T(F)}$ reduces T for all closed set F in C.

PROOF. We show the implications $(1) \Rightarrow (4) \Rightarrow (2) \Rightarrow (1)$ and $(1) \Rightarrow (3) \Rightarrow (2)$.

 $(1) \Rightarrow (4)$ and (3). This implication is known. But we include it for completeness. (1) implies that T is a spectral operator with a normal scalar part N. Hence T is a decomposable operator and T has the conditions (B) and (C). Hence T is a weak decomposable operator. Let $E(\)$ be the resolution of the identity of N. Then $H_T(F) = H_N(F) = E(F)H$ for all closed sets F in C. This implies $H_T(F)$ reduces T. And if $Y \in SM(T)$, then $Y = H_T(\sigma(T|Y))$, hence Y reduces T (see, for details, [2 and 3]).

(4) \Rightarrow (2). T has the condition (C) by Lemma 2. Since $P_F T = T P_F$ for all closed sets F in C, T has the condition (I).

(2) \Rightarrow (1). Since T is a decomposable operator with (I) by Lemma 3, this implication follows from [8].

(3) \Rightarrow (2). T has the condition (C) by Lemma 1, hence $H_T(F) \in SM(T)$ for all closed sets F in C. Thus $P_FT = TP_F$ and T has the condition (I).

Since $T \in B(H)$ is a spectral operator if and only if T is similar to some $S \in B(H)$ which satisfies the condition (1) of the Theorem (see [3]), we have the following

COROLLARY. $T \in B(H)$ is a spectral operator if and only if T is similar to some $S \in B(H)$ which satisfies one of the conditions of the Theorem.

REMARK 1. The condition (I) is introduced by Wadhwa in [8]. In [6] Jafarian proved the implication $(2) \Rightarrow (1)$ of the Theorem under an assumption that T is reductive, i.e. every invariant subspace of T reduces T.

REMARK 2. Let $X = L^{\infty}[0, 1]$ be the Banach space of all essentially bounded complex valued functions on [0, 1] endowed with the essential supremum norm. Let $T \in B(X)$ be the multiplication operator, i.e. (Tx)(t) = tx(t) for $t \in [0, 1]$ and $x \in X$. Then we can show that T is a decomposable operator and $\sigma_T(x) = \text{ess supp } x$ by an argument similar to [4, p. 106]. $X_T(F)$ stands for $H_T(F)$. Define $P_F \in B(X)$ such that $(P_F x)(t) = \chi_F(t)x(t)$ for $t \in [0, 1]$ where $\chi_F(t)$ is the characteristic function of a closed set F in C. Then P_F is a projection of X onto $X_T(F)$ (of course, P_F is not selfadjoint) and $P_F T = TP_F$. Hence $X_T(F)$ reduces T, and T has the condition (I). And if $\sigma_T(x) \cap \sigma_T(y) = \emptyset$, then |x(t) + y(t)| = |x(t)| + |y(t)| a.e. [0, 1]. Hence $||x + y|| \ge ||x||$, thus T has the condition (B). But T is not a spectral operator. Because if T is spectral, then T has the resolution of the identity E(). Hence, $x = \lim_{n \to \infty} x_n$ where $x_n = E(\{0\} \cup [1/n, 1])x$ for all $x \in X$. Let $x(t) \equiv 1$. Since $E(F)X = X_T(F)$ for all closed sets F in C, ess supp $x_n \subset \{0\} \cup [1/n, 1]$. Hence $||x - x_n|| = 1$ for all n. This is a contradiction. Thus, the Theorem does not hold in this case.

References

1. E. Albrecht, A characterization of spectral operators on Hilbert spaces, Glasgow Math. J. 23 (1982), 91-95.

2. I. Colojoară and C. Foiaș, *Theory of generalized spectral operators*, Gordon & Breach, New York, 1968.

3. N. Dunford and J. T. Schwartz, *Linear operators*. Part III: Spectral operators, Wiley, New York, 1971.

4. I. Erdelyi and R. Lange, Spectral decomposition on Banach spaces, Lecture Notes in Math., vol. 623, Springer-Verlag, New York, 1977.

5. A. A. Jafarian, Weak and quasidecomposable operators, Rev. Roumaine Math. Pures Appl. 22 (1977), 195-212.

6. _____, On reductive operators, Indiana Univ. Math. J. 23 (1974), 607-613.

7. K. Tanahashi, Reductive weak decomposable operators are spectral, Proc. Amer. Math. Soc. 87 (1983), 44-46.

8. B. L. Wadhwa, Decomposable and spectral operators on a Hilbert space, Proc. Amer. Math. Soc. 40 (1973), 112-114.

9. ____, A note on reductive operators, Acta Sci. Math. (Szeged) 38 (1976), 187-189.

TÕHOKU COLLEGE OF PHARMACY, KOMATSUSHIMA, SENDAI, 983, JAPAN

DEPARTMENT OF MATHEMATICS, COLLEGE OF GENERAL EDUCATION, TÔHOKU UNIVERSITY, KAWAUCHI, SENDAI, 980, JAPAN