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A CHARACTERIZATION OF SPECTRAL OPERATORS
ON HILBERT SPACES

KOTARO TANAHASHI AND TAKASHI YOSHINO

ABSTRACT. In [8] Wadhwa shows that if a bounded linear operator T on a complex
Hilbert space H is a decomposable operator and has the condition (I), then T is a
spectral operator with a normal scalar part. In this paper, by using this result, we
show that a weak decomposable operator T is a spectral operator with a normal
scalar part if and only if T satisfies the assertion that (1) T has the conditions (C)
and (I) or that (2) every spectral maximal space of T reduces 7. This result improves
[1, 6 and 7). From this result, we can get a characterization of spectral operators, but
this result does not hold in complex Banach space (see Remark 2).

1. Preliminaries. Let H be a complex Hilbert space and B( H) be the algebra of all
bounded linear operators on H. Let o(T) be the spectrum of T and Lat(7T) be the
family of all invariant subspaces of 7. Y € Lat(T) is called a spectral maximal space
of T if Y contains all Z € Lat(T") such that o(T|Z) C o(T|Y). Let SM(T') be the
family of all spectral maximal spaces of T. T € B(H) is called a decomposable
(resp., weak decomposable) operator if for every finite open covering {G,,...,G,} of
o(T), there exists a system {Y,,...,Y,} in SM(T) such that (1) H=Y, +--- +7,
(resp, H=Y, + --- +Y, where Y denotes the closure of ¥ C H) and (2) o( T\Y)C
G,fori=1,...,n. T € B(H) is said to have the single valued extension property or
the condition (A) if there exists no nonzero analytic function f such that
(z—T)f(z) =0. If T € B(H) has the condition (A), then for every x € H, there
exists a maximal open set p;(x) in the complex plane C for which there exists the
unique analytic function x(z) such that (z — T)x(z) = x on py(x). Let op(x) =
pr(x) and Hy(E) = {x € H|oy(x) C E} for a subset E of C. T € B(H) with (A)
is said to have the condition (B) if there exists K > 0 such that ||x|| < K||x + y|| for
all x and y in H with o,(x) N o,(y) = @. T with (A) is said to have the condition
(C) if H(F) is closed for all closed sets F in C. T € B(H) with (A) and (C) is said
to have the condition (I) if 6,(Prx) C o(x) for all closed sets F in C and for all
x € H where Py is the orthogonal projection of H onto H(F).

It is known that weak decomposable operators have the condition (A) and that
decomposable operators have the conditions (A) and (C) (see [2 and 5]). And if
T € B(H) has the conditions (A) and (C), then H,(F) € SM(T') and o(T| H;(F))
C F for all closed sets F in C (see [2]).
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2. Main results.

LeMMA 1. If T € B(H) is a weak decomposable operator and if every spectral
maximal space of T reduces T, then T has the condition (C).

PROOF. Let F be a closed set in C, and G be any open set containing F. Since
{F¢ G} is an open covering of o(T), there exist Y, and Y, in SM(T) such that H
=Y, + Y, o(T|Y,) C F'and o(T|Y,) C G. If x € Hy(F), there exist x}, € Y, for
i = 1,2 such that x = lim,_ .(x} + x?). Let P be the orthogonal projection of H
onto Y,. Then we have PT = TP, hence o, (Px) Cop(x)No(T|Y) CFNF'=@.
This implies Px = 0. Hence 0 = Px = lim,_ (Px! + Px?) = lim,_ .(x} + Px}),
and so

x = lim (x} 4+ x2) — lim (x} + Px2) = lim (x2 — Px2).
n— oo n— oo n— oo
Since spectral maximal spaces are hyperinvariant (see [2, Proposition 1.3.2]), we have
x €Y, Hence H(F) C Y, C H(o(T|Y,)) C H(G). Since G is any open set
containing F, we have H(F)C NY, C NHHG) = H(NG)= Hy(F). Thus
H,(F)= MY, is closed.

LEMMA 2. Let T € B(H) be a weak decomposable operator with (B) and let H;( F)
reduce T for all closed sets F in C. Then T has the condition (C).

PROOF. Let F be a closed set in C, and G any open set containing F. Since { F¢, G}
is an open covering of o(T'), there exist Y, and Y, in SM(T) such that H =Y, + Y,,
o(T|Y,) C F®and o(T|Y,) C G. If x € H.(F), there exist x, € Y, for i = 1,2 such
that x = lim,_ (x} + x2). Let P be the orthogonal projection of H onto H(F).
Then PT = TP and x = Px = lim,_ (Px} + Px?). Since Y, is hyperinvariant, we
have Px) € Y, NH (F) C H(F) N Hy(F). If y € H(F°) N Hy(F), then y =
lim,_ .y, where y, € H.(F) and o;(y) No;(-y,) CF°NF= J. Hence y =0
because || y|| < K||y — y,|| = 0 (n — 0) by the condition (B). Hence Px! = 0, and so
x =lim,_ ,Px? € Y, because Y, is hyperinvariant. Thus Hr(F) C Y, C H(G).
The rest of the proof is similar to the proof of Lemma 1.

LEMMA 3. Let T € B(H) be a weak decomposable operator. If T has the conditions
(C) and (1), then T is a decomposable operator.

PROOF. We show H = H,(F) + HT(F) for all closed sets F in C. Then it is easy
to show that T is a decomposable operator. Since H = H,(F) ® H,(F)*, we have
only to show H (F)* C H,-(F‘). Let G be any open set containing F. Since { F¢, G}
is an open covering of o(T'), there exist Y, and Y, in SM(T) such that H = Y, + Y,
o(T|Y)CF‘and o(T|Y,)CG. If x E H (G)", there exist x' € Y, for i = 1,2
such that x = lim,_ (x! + x2). Hence

0= Pzx = lim (Pzx! + Psx?) = lim (Pgx} + x2),

n—oo n— oo

and so

x = lim (x}+ x2) — lim (Pgx} + x2) = lim (x} — Psx}).
n-— oo n— oo n—oo
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Since o,(Pgx!) C o (x}) Co(T|Y,) C F¢, we have x| — P=x! € H,(F) and so
x € Hy(F°). Hence H,(G)* C Hp(F°), and so H,(G) D H,(F)*. Since G is any
open set containing F, we have Hy(F) = H(N G)= ﬂHT(G) D HT(F")L . Thus
H (F)* C H(F°).

THEOREM. If T € B(H), then the following assertions are equivalent.

(1) T= N+ Q where N € B(H) is a normal operator and Q is a quasinilpotent
operator commuting with N.

(2) T is a weak decomposable operator with (C) and (1).

(3) T is a weak decomposable operator and every spectral maximal space of T
reduces T.

(4) T is a weak decomposable operator with (B), and H,( F) reduces T for all closed
set Fin C.

PrOOF. We show the implications (1) = (4) = (2) = (1) and (1) = (3) = (2).

(1) = (4) and (3). This implication is known. But we include it for completeness.
(1) implies that T is a spectral operator with a normal scalar part N. Hence 7T is a
decomposable operator and T has the conditions (B) and (C). Hence T is a weak
decomposable operator. Let E( ) be the resolution of the identity of N. Then
H (F)= Hy(F)= E(F)H for all closed sets F in C. This implies H;(F) reduces
T.And if Y € SM(T), then Y = H,(o(T|Y)), hence Y reduces T (see, for details, [2
and 3)).

(4) = (2). T has the condition (C) by Lemma 2. Since P.T = TP, for all closed
sets F'in C, T has the condition (I).

(2) = (1). Since T is a decomposable operator with (I) by Lemma 3, this implica-
tion follows from [8].

(3) = (2). T has the condition (C) by Lemma 1, hence H,(F) € SM(T) for all
closed sets F in C. Thus P.T = TP and T has the condition (I).

Since T € B(H) is a spectral operator if and only if T is similar to some
S € B(H) which satisfies the condition (1) of the Theorem (see [3]), we have the
following

COROLLARY. T € B(H) is a spectral operator if and only if T is similar to some
S € B(H) which satisfies one of the conditions of the Theorem.

REMARK 1. The condition (I) is introduced by Wadhwa in [8]. In [6] Jafarian
proved the implication (2) = (1) of the Theorem under an assumption that T is
reductive, i.e. every invariant subspace of T reduces 7.

REMARK 2. Let X = L*[0, 1] be the Banach space of all essentially bounded
complex valued functions on [0, 1] endowed with the essential supremum norm. Let
T € B(X) be the multiplication operator, i.e. (Tx)¢) = tx(¢) for t €[0,1] and
x € X. Then we can show that T is a decomposable operator and o,(x) = esssupp x
by an argument similar to [4, p. 106]. X;-(F) stands for H;(F). Define Pr € B( X)
such that (Pex)(t) = x p(#)x(¢) for ¢t €[0,1] where x(¢) is the characteristic
function of a closed set F in C. Then Py is a projection of X onto X,(F) (of course,
P is not selfadjoint) and P.T = TP,. Hence X (F) reduces T, and T has the
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condition (I). And if o,(x) N oy (y) = &, then |x(¢) + y(1)|=|x(1)| +|y(1)| a.e.
[0, 1]. Hence ||x + y|| = ||x]|, thus T has the condition (B). But T is not a spectral
operator. Because if T is spectral, then T has the resolution of the identity E( ).
Hence, x = lim,,_, ,x, where x, = E({0} U [1/n,1])x for all x € X. Let x(¢) = 1.
Since E(F)X = Xp(F) for all closed sets F in C, esssuppx, C {0} U [l1/n,1].
Hence || x — x,|| = 1 for all n. This is a contradiction. Thus, the Theorem does not
hold in this case.

REFERENCES

1. E. Albrecht, A4 characterization of spectral operators on Hilbert spaces, Glasgow Math. J. 23 (1982),
91-95.

2. L. Colojoara and C. Foiag, Theory of generalized spectral operators, Gordon & Breach, New York,
1968.

3. N. Dunford and J. T. Schwartz, Linear operators. Part III: Spectral operators, Wiley, New York,
1971.

4. 1. Erdelyi and R. Lange, Spectral decomposition on Banach spaces, Lecture Notes in Math., vol. 623,
Springer-Verlag, New York, 1977.

5. A. A. Jafarian, Weak and quasidecomposable operators, Rev. Roumaine Math. Pures Appl. 22 (1977),
195-212.

6. , On reductive operators, Indiana Univ. Math. J. 23 (1974), 607-613.

7. K. Tanahashi, Reductive weak decomposable operators are spectral, Proc. Amer. Math. Soc. 87 (1983),
44-46.

8. B. L. Wadhwa, Decomposable and spectral operators on a Hilbert space, Proc. Amer. Math. Soc. 40
(1973), 112-114.

9. , A note on reductive operators, Acta Sci. Math. (Szeged) 38 (1976), 187-189.

TOHOKU COLLEGE OF PHARMACY, KOMATSUSHIMA, SENDAI, 983, JAPAN

DEPARTMENT OF MATHEMATICS, COLLEGE OF GENERAL EDUCATION, TOHOKU UNIVERSITY, KAWAUCHI,
SENDAI 980, JAPAN



