The Picard theorem for Riemann surfaces
HTML articles powered by AMS MathViewer
- by H. L. Royden
- Proc. Amer. Math. Soc. 90 (1984), 571-574
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733408-6
- PDF | Request permission
Abstract:
Let $W$ be a Riemann surface other than the sphere, plane, punctured plane or torus. Let $f$ be a holomorphic map of the punctured disk $0 < \left | z \right | < 1$ into $W$. Then $f$ can be extended to a holomorphic map of the disk $\left | z \right | < 1$, possibly, into a Riemann surface ${W^ * }$ containing $W$. We give a new proof of this fact and explore some consequences of it.References
- Maurice Heins, On Fuchsoid groups that contain parabolic transformations, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 203–210. MR 0151613
- Heinz Huber, Über analytische Abbildungen Riemannscher Flächen in sich, Comment. Math. Helv. 27 (1953), 1–73 (German). MR 54051, DOI 10.1007/BF02564552
- A. Marden, I. Richards, and B. Rodin, Analytic self-mappings of Riemann surfaces, J. Analyse Math. 18 (1967), 197–225. MR 212182, DOI 10.1007/BF02798045
- Makoto Ohtsuka, On the behavior of an analytic function about an isolated boundary point, Nagoya Math. J. 4 (1952), 103–108. MR 48586
- Makoto Ohtsuka, Boundary components of abstract Riemann surfaces, Lectures on functions of a complex variable, University of Michigan Press, Ann Arbor, Mich., 1955, pp. 303–307. MR 0069277
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 571-574
- MSC: Primary 30F35; Secondary 30F99
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733408-6
- MathSciNet review: 733408