A topological space without a complete quasi-uniformity
HTML articles powered by AMS MathViewer
- by Hans-Peter A. Künzi and Peter Fletcher
- Proc. Amer. Math. Soc. 90 (1984), 611-615
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733415-3
- PDF | Request permission
Abstract:
We show that an example of Burke and van Douwen has no complete quasi-uniformity. Moreover, we show that it is almost finitely-fully normal but not almost ${\aleph _0}$-fully normal.References
- Giovanni Aquaro, Intorno ad una generalizzazione degli spazi paracompatti, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 38 (1965), 824–827 (Italian). MR 195044 D. K. Burke and E. K. van Douwen, On countably compact extensions of normal locally compact $M$-spaces, Set-Theoretic Topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976), Academic Press, New York, 1977, pp. 81-90.
- Peter Fletcher and William F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics, vol. 77, Marcel Dekker, Inc., New York, 1982. MR 660063
- Klaas Pieter Hart, More on M. E. Rudin’s Dowker space, Proc. Amer. Math. Soc. 86 (1982), no. 3, 508–510. MR 671226, DOI 10.1090/S0002-9939-1982-0671226-6 H. J. K. Junnila, Covering properties and quasi-uniformities of topological spaces, Ph. D. Thesis, Virginia Polytechnic Inst. and State Univ., Blacksburg, Va., 1978.
- M. J. Mansfield, Some generalizations of full normality, Trans. Amer. Math. Soc. 86 (1957), 489–505. MR 93753, DOI 10.1090/S0002-9947-1957-0093753-5
- K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/62), 223–236. MR 132525, DOI 10.4064/fm-50-3-223-236
- William J. Pervin, Uniformization of neighborhood axioms, Math. Ann. 147 (1962), 313–315. MR 140082, DOI 10.1007/BF01440952
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 90 (1984), 611-615
- MSC: Primary 54E15; Secondary 54D20
- DOI: https://doi.org/10.1090/S0002-9939-1984-0733415-3
- MathSciNet review: 733415