Higher Whitehead groups of certain bundles over Seifert manifolds
HTML articles powered by AMS MathViewer
- by A. J. Nicas and C. W. Stark
- Proc. Amer. Math. Soc. 91 (1984), 1-5
- DOI: https://doi.org/10.1090/S0002-9939-1984-0735551-4
- PDF | Request permission
Abstract:
Vanishing results for ${\text {W}}{{\text {h}}_j}({\pi _1}M) \otimes R(R = {\mathbf {Z}},{\mathbf {Q}},{\text { or }}{\mathbf {Z}}[1/2])$ are obtained when $M$ is a closed aspherical manifold which is the total space of a bundle over an insufficiently large Seifert manifold with infinite fundamental group of hyperbolic type. Allowable fibers include Riemannian flat manifolds and closed aspherical manifolds with poly-${\mathbf {Z}}$ fundamental groups. Corollaries. concern the homotopy groups of the group ${\text {TOP}}(M)$ of self-homeomorphisms of $M$.References
- R. Keith Dennis and Kiyoshi Igusa, Hochschild homology and the second obstruction for pseudoisotopy, Algebraic $K$-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp.Β 7β58. MR 689365
- Andreas W. M. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. (2) 102 (1975), no.Β 2, 291β325. MR 387392, DOI 10.2307/1971033
- F. T. Farrell and W. C. Hsiang, The topological-Euclidean space form problem, Invent. Math. 45 (1978), no.Β 2, 181β192. MR 482771, DOI 10.1007/BF01390272
- F. T. Farrell and W. C. Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp.Β 325β337. MR 520509
- F. T. Farrell and W. C. Hsiang, Topological characterization of flat and almost flat Riemannian manifolds $M^{n}$ $(n\not =3,\,4)$, Amer. J. Math. 105 (1983), no.Β 3, 641β672. MR 704219, DOI 10.2307/2374318
- W. C. Hsiang and R. W. Sharpe, Parametrized surgery and isotopy, Pacific J. Math. 67 (1976), no.Β 2, 401β459. MR 494165
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390
- Andrew J. Nicas, Induction theorems for groups of homotopy manifold structures, Mem. Amer. Math. Soc. 39 (1982), no.Β 267, vi+108. MR 668807, DOI 10.1090/memo/0267 β, On ${\text {W}}{{\text {h}}_{\text {2}}}$ of a Bieberbach group, Topology (to appear). β, On ${\text {W}}{{\text {h}}_3}$ of a Bieberbach group, Math. Proc. Cambridge Philos. Soc. (to appear).
- Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
- Steven P. Plotnick, Vanishing of Whitehead groups for Seifert manifolds with infinite fundamental group, Comment. Math. Helv. 55 (1980), no.Β 4, 654β667. MR 604721, DOI 10.1007/BF02566714
- Christopher W. Stark, Structure sets vanish for certain bundles over Seifert manifolds, Trans. Amer. Math. Soc. 285 (1984), no.Β 2, 603β615. MR 752493, DOI 10.1090/S0002-9947-1984-0752493-3
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195
- Friedhelm Waldhausen, Algebraic $K$-theory of generalized free products. I, II, Ann. of Math. (2) 108 (1978), no.Β 1, 135β204. MR 498807, DOI 10.2307/1971165
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 1-5
- MSC: Primary 18F25; Secondary 57T20
- DOI: https://doi.org/10.1090/S0002-9939-1984-0735551-4
- MathSciNet review: 735551