Bloch constants for meromorphic functions near an isolated singularity
HTML articles powered by AMS MathViewer
- by David Minda
- Proc. Amer. Math. Soc. 91 (1984), 69-72
- DOI: https://doi.org/10.1090/S0002-9939-1984-0735566-6
- PDF | Request permission
Abstract:
Suppose $f$ is meromorphic in a punctured neighborhood of the origin and has an essential singularity at the origin. Given any $\varepsilon > 0$ we show that the Riemann surface of $f$ contains an unramified disk of spherical radius $\pi /3 - \varepsilon$. The number $\pi /3$ can be replaced by $\pi /2$ if $f$ is locally schlicht and this value is best possible. If $f$ is actually holomorphic, then the Riemann surface of $f$ contains arbitrarily large unramified euclidean disks. These results generalize theorems of Valiron and Ahlfors dealing with holomorphic and meromorphic functions, respectively, on the complex plane which have an essential singularity at infinity.References
- L. V. Ahlfors, Sur les fonctions inverses des fonctions méromorphes, C. R. Acad. Sci. Paris 194 (1932), 1145-1147.
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743 A. Bloch, Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l’uniformisation, Ann. Fac. Sci. Toulouse Math. (3) 17 (1926), 1-22.
- Olli Lehto, Distribution of values and singularities of analytic functions, Ann. Acad. Sci. Fenn. Ser. A I 249/3 (1957), 16. MR 0096800
- Olli Lehto, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv. 33 (1959), 196–205. MR 107003, DOI 10.1007/BF02565916
- Olli Lehto and K. I. Virtanen, On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. A. I. 1957 (1957), no. 240, 9. MR 87747
- C. David Minda, Bloch constants, J. Analyse Math. 41 (1982), 54–84. MR 687945, DOI 10.1007/BF02803394
- David Minda, Bloch constants for meromorphic functions, Math. Z. 181 (1982), no. 1, 83–92. MR 671716, DOI 10.1007/BF01214983
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 69-72
- MSC: Primary 30C25; Secondary 30D99
- DOI: https://doi.org/10.1090/S0002-9939-1984-0735566-6
- MathSciNet review: 735566