Some intersection properties of the fibres of Springer's resolution
Author:
James S. Wolper
Journal:
Proc. Amer. Math. Soc. 91 (1984), 182-188
MSC:
Primary 20G99; Secondary 14L30
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740166-8
MathSciNet review:
740166
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Combinatorial results are used to calculate the dimension of the intersection of any two irreducible components of the set in the flag variety fixed by the action of a unipotent element of whose Jordan decomposition has two blocks. This is then related to the "left cells" of Kazhdan and Lusztig, which are used to construct representations of
, the Weyl group of
.
- [KL] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, https://doi.org/10.1007/BF01390031
- [Kn] D. E. Knuth, The art of computer programming, Vol. III, Addison-Wesley, Reading, Mass., 1973.
- [LS] Alain Lascoux and M-P. Schützenberger, Polynômes de Kazhdan and Lusztig pour les Grassmanniennes, Astérisque, Soc. Math. France, Paris, 87-88.
- [S] N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38 (1976), no. 5, 452–456. MR 0485901
- [St] Robert Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. MR 0352279
- [V] J. A. Vargas, Fixed points under the action of unipotent elements of 𝑆𝐿_{𝑛} in the flag variety, Bol. Soc. Mat. Mexicana (2) 24 (1979), no. 1, 1–14. MR 579665
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20G99, 14L30
Retrieve articles in all journals with MSC: 20G99, 14L30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740166-8
Article copyright:
© Copyright 1984
American Mathematical Society