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WEIGHTED NORM INEQUALITIES

FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

ON SPACES OF HOMOGENEOUS TYPE

HUGO AIMAR AND ROBERTO A. MACIAS

Abstract. The purpose of this note is to give an adequate Calderón-Zygmund type

lemma in order to extend to the general setting of spaces of homogeneous type the

Ap weighted Lp boundedness for the Hardy-Littlewood maximal operator given by

M. Christ and R. Fefferman.

Recently Michael Christ and Robert Fefferman gave in [1] a remarkable proof of

the weighted norm inequality for the Hardy-Littlewood maximal function operator

in R", \\Mf\\Lp(w) < Cp\\f\\Lp(w) when the weight belongs to Muckenhoupt A classes

and p > 1. In [2], A. P. Calderón proved this boundedness property for spaces such

that the measure of balls is continuous as a function of the radius. In [3], R. Macias

and C. Segovia extended this result to general spaces of homogeneous type (defined

below) constructing an adequate quasi-distance. In both cases, the reverse Holder

inequality must be extended to this general setting, while the proof given in [1] does

not make use of this property and only depends on an adequate Calderón-Zygmund

type lemma, the proof of which for cubes in R" is very simple. The purpose of this

note is to obtain a decomposition lemma which allows us to extend the proof of

Christ and Fefferman to spaces of homogeneous type.

We now introduce some notation and definitions. Let A' be a set, a nonnegative

symmetric function on X X X shall be called a quasi-distance if there exists a

constant K such that d(x, y) < K(d(x, z) + d(z, y)) for every x, y, z E X, and

d(x, y) = 0 if and only if x = y. Let p be a positive measure defined on a a-algebra

of subsets of X which contains the ¿-balls and satisfies the following: there exists a

constant C such that 0 < p(B(x,2r)) < Cu(B(x, r)) < co holds for every x G X

and r > 0. We shall say that ( X, d, a) is a space of homogeneous type if X is a set

endowed with a quasi-distance and a measure satisfying these conditions. If F =

B(x, r) is a ¿-ball in X, we write B for B(x, 5K2r) and F for B(x, l5K5r). Let A be

such that p(ê) *£ Ap(B) for every F. If/is a positive measurable function defined

on X and E a measurable set, f(E) means fEfdp, mEf= p(F)"1 • f(E) and

Mf(x) = sup ws|/|, where the supremum is taken over all balls B containing x. By

modifying slightly the proof of Theorem (1.2) in Chapter III of [4], we get the

following covering lemma.
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Lemma 1. Let E be a bounded subset of X and assume that for each x E E there exist

y(x) E X and r(x) > 0 such that x G B(y(x), r(x)). Then, there exists a sequence of

disjoint balls {B(y(x,), r(x,))} such that E E U%xB(y(xl),5K2r(xi)).

Lemma 2. Suppose p(X) = oo. For any nonnegative integrable function f with

bounded support, b 3* 2/13 > 1 and any k E Z such that S2A. = {y E X: bk+[ > Mf(y)

> bk) ¥= 0, there exists a sequence of balls {Bk}¡eN satisfying

(2A)QkC U-,Ä*.
(2.2) F* n Bjk= 0ifi*j,
(2.3) For every Bk, there exists xk E Bk such that if rk is the radius of Bk,

r > 5K2rk, and xk E B(y, r) = B, then bk+l > Mf(xk) > mBff> bk > mBf.

(2.4) ffx £ WJLk U*L,F/ and M'f(x) < oo, then Mf(x) < bk.
(2.5) Let If = {(/, n) E Z X N: / > k + 2, É„ D Bk =¡¿ 0 } and let Ak =

Uu^rJn,then2p(Ak)*¡p(Bk).
(2.6) Let Ek = Bk-Ak, then 2p(Ek)^ p(Bk) and p(X - UkjEk) = 0. If

x G F/ andMf(x) < oo, then Mf(x) < bk+1.

(2.7) // Fk = Bk-Ak, then p(Fk)> p(Bk)/2A and 2f=_x IJ=xxFf(x) < 3,

where \e denotes the characteristic function of the set E.

Proof. If x G Qk, the integrability of / implies that the set Rk(x) = {r > 0:

mBf> bk, x E B = B(y, r)} is bounded. We can choose r(x) E Rk(x) in such a

way that if r > 5K2r(x), then r £ Rk(x). Thus, there is a point y/*) G X such that

bk+i > Mf(x) ^ mB(y(xhr(x))f>bk > mB(x,r)f,

whenever r> 5K2r(x) and x E B(y, r). The boundedness of the support of/

implies that of ük, therefore Lemma 1 can be applied to obtain a sequence {Bk)

satisfying (2.1)-(2.4). In order to get (2.5), let us first show that if / > k + 2, n E N

and É„ n Bk ¥= 0, then

(2.8) B¡,EEk,

even more rj =s rk. Indeed, if we suppose that /•„' > rk, then Bk E B'n. The last

inequality in (2.3) applied to B(y, r) = Bln gives

bk>mêlJ^p(B'n)a(êl,ymBlJ^A-'mB,f,

by the third inequality in (2.3) applied to the pair (/, n), we havey4"'wB//> A~lb' >

A']bk+2, which is a contradiction. Now (2.3), (2.2) and (2.8) yield"(2.5) in the

following way:

p{Ak)<lp(Bl,)<A2b''f fdp^AÍ    f    b-')} fdu
rk ,k       JB'„ \l=k + 2        I    BJ

^A2b-k-\b-iy'p{Bk)mè,f^p{Bk)/2.

In order to prove (2.6), let x be a point such that Mf(x) < oo; then jíEÍI, for some

k E Z. By (2.1), x G Bk for some j E N. Assume that x E Ak, then there exists

(I, n) E Ik such that x G É'n, and from (2.3) we obtain

Mf(x)> mB,J> A-]mB,f> A^bk + 2 > bk+{,
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which is a contradiction. Thus, the sequence {Ek) is a covering of {x: Mf(x) < oo}.

On the other hand, on account of the weak type (1,1) boundedness of the

Hardy-Littlewood maximal function operator, the set {x: Mf(x) = 00} is of mea-

sure zero and therefore (2.6) is proved. From (2.2) we see that

00

2 Xf/(x) =Xuf=lff(x) ^Xuy-.f/W,
7=1

for any k E Z. By definition of Ek it follows readily that no point of X belongs to

more than three of the sets U°°=, Ek. Then

00      00 00

2    2 X//UH  2 Xu-=1£/(^)<3,
fc—-00  j— 1 k = -oo

which is (2.7). This finishes the proof of the lemma.

With this result the argument given in [1] can be adapted to our purposes and we

shall check the details. Let w be a weight function satisfying the A  condition

supwBw[mBw1/('-/')]''     < 00.

B

As in the euclidean case, the weight a = w]/0~p) satisfies A where q + p = qp; then

both w and a satisfy theA^ condition, that is

p(E)p(B)-]<Cw(E)Sw(B)-S,

for all E E B, with C and ô positive and independent of F and F. Suppose

p(X) — 00 and/as in Lemma 2. Then (2.6) and (2.3) yield

( (MfYwdp^b2"^ {mB}f)pw(Ejk)
k.J

b2"2
k.j

Xa{Ek)

-rrrr Í (f°~l)°dp
a(Bk) JBf

40 «(*;)
/*(*/)

p-\Ásj)

Applying the Ax condition on w and a and the A   condition on w, the Lp(wdp)

norm of Mf is bounded by

c 2
\k.j

-lj(fo-i)odp
o(Bk)JBf

Vp

'(*/)

Applying (2.7) and the Ax condition on a, this is bounded by

c 2
\k.j

Vp

^BjjîBSfa~>dl1    //*        <c[Jx[M0(fo-)Yadp
1/7'
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where Ma is the Hardy-Littlewood maximal function operator on the space of

homogeneous type (A', d, a dp). Then, we have

||M/|U,(W„) < cjj>a-'+1 ¿pj P = C\\f\\m»dlt).

This completes the proof for the case p(X) = oo. If p(X) < oo, let Y be X X R, 8:

YX Y -» R+ U{0} defined by 8((xx, tx), (x2, t2)) = max{d(xx, x2), \tx - t2\) and

v — p X X, where X is the Lebesgue measure on R; then (Y,d,v) is a space of

homogeneous type with v(Y) — oo. Given a weight w satisfying A on X, then

W(x, t) = w(x) satisfies Ap on Y. If / is a measurable function on X, define

F(x, t) = f(x)X(-2R,2R)(0 on Y, where R is such that F(x, F) = X for every x G X.

With these definitions it is clear that Mf(x) < MYF(x, t) for all t E (-R, R), where

MY is the Hardy-Littlewood maximal function operator on Y. By these remarks, the

result just proved applied to MY, F and W implies the desired inequality.
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