The Carathéodory distance does not define the topology
Author:
Jean-Pierre Vigué
Journal:
Proc. Amer. Math. Soc. 91 (1984), 223-224
MSC:
Primary 32H15
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740175-9
MathSciNet review:
740175
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We construct an analytic space such that the Carathéodory pseudo-distance
is a true distance on
; however,
does not define the analytic space topology of
.
- [1] Theodore J. Barth, Some counterexamples concerning intrinsic distances, Proc. Amer. Math. Soc. 66 (1977), no. 1, 49–53. MR 454078, https://doi.org/10.1090/S0002-9939-1977-0454078-7
- [2] Shoshichi Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416. MR 414940, https://doi.org/10.1090/S0002-9904-1976-14018-9
- [3] Nessim Sibony, Prolongement des fonctions holomorphes bornées et métrique de Carathéodory, Invent. Math. 29 (1975), no. 3, 205–230 (French). MR 385164, https://doi.org/10.1007/BF01389850
- [4] Jean-Pierre Vigué, La distance de Carathéodory n’est pas intérieure, Results Math. 6 (1983), no. 1, 100–104 (French). MR 714663, https://doi.org/10.1007/BF03323329
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H15
Retrieve articles in all journals with MSC: 32H15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740175-9
Keywords:
Carathéodory distance,
topology defined by the Caratheodory distance
Article copyright:
© Copyright 1984
American Mathematical Society