Dunford-Pettis operators and weak Radon-Nikodým sets
HTML articles powered by AMS MathViewer
- by Lawrence H. Riddle
- Proc. Amer. Math. Soc. 91 (1984), 254-256
- DOI: https://doi.org/10.1090/S0002-9939-1984-0740180-2
- PDF | Request permission
Abstract:
Let $K$ be a weak*-compact convex subset of a Banach space $X$. If every Dunford-Pettis operator from ${L_1}\left [ {0,1} \right ]$ into ${X^ * }$ that maps the set $\{ \chi E/\mu (E):E \text {measurable}, \mu (E) > 0\}$ into $K$ has a Pettis derivative, then $K$ is a weak Radon-Nikodým set. This positive answer to a question of M. Talagrand localizes a result of E. Saab.References
- J. Bourgain, Dunford-Pettis operators on $L^{1}$ and the Radon-Nikodým property, Israel J. Math. 37 (1980), no. 1-2, 34–47. MR 599300, DOI 10.1007/BF02762866
- Kazimierz Musiał and Czesław Ryll-Nardzewski, Liftings of vector measures and their applications to RNP and WRNP, Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977) Lecture Notes in Math., vol. 645, Springer, Berlin-New York, 1978, pp. 162–171. MR 502438
- Lawrence H. Riddle, Elias Saab, and J. J. Uhl Jr., Sets with the weak Radon-Nikodým property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 527–541. MR 703283, DOI 10.1512/iumj.1983.32.32038
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- Elias Saab, Some characterizations of weak Radon-Nikodým sets, Proc. Amer. Math. Soc. 86 (1982), no. 2, 307–311. MR 667295, DOI 10.1090/S0002-9939-1982-0667295-X
- Elias Saab, On Dunford-Pettis operators that are Pettis-representable, Proc. Amer. Math. Soc. 85 (1982), no. 3, 363–365. MR 656103, DOI 10.1090/S0002-9939-1982-0656103-9
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 254-256
- MSC: Primary 46B22; Secondary 46G10
- DOI: https://doi.org/10.1090/S0002-9939-1984-0740180-2
- MathSciNet review: 740180