A fundamental inequality in the convolution of functions on the half line
Author:
Saburou Saitoh
Journal:
Proc. Amer. Math. Soc. 91 (1984), 285-286
MSC:
Primary 30C40; Secondary 26D20
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740187-5
MathSciNet review:
740187
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For any positive integer and
, we note the inequality for the iterated convolution
of
:

- [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 51437, https://doi.org/10.1090/S0002-9947-1950-0051437-7
- [2] Jacob Burbea, Total positivity of certain reproducing kernels, Pacific J. Math. 67 (1976), no. 1, 101–130. MR 442662
- [3] Saburou Saitoh, The Bergman norm and the Szegő norm, Trans. Amer. Math. Soc. 249 (1979), no. 2, 261–279. MR 525673, https://doi.org/10.1090/S0002-9947-1979-0525673-8
- [4] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C40, 26D20
Retrieve articles in all journals with MSC: 30C40, 26D20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740187-5
Keywords:
Convolution,
Paley-Wiener theorem,
Laplace transform
Article copyright:
© Copyright 1984
American Mathematical Society