Naturally reductive metrics of nonpositive Ricci curvature
Authors:
Carolyn Gordon and Wolfgang Ziller
Journal:
Proc. Amer. Math. Soc. 91 (1984), 287-290
MSC:
Primary 53C30; Secondary 53C25
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740188-7
MathSciNet review:
740188
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The main theorem states that every naturally reductive homogeneous Riemannian manifold of nonpositive Ricci curvature is symmetric. As a corollary, every noncompact naturally reductive Einstein manifold is symmetric.
- [DZ] J. E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979), no. 215, iii+72. MR 519928, https://doi.org/10.1090/memo/0215
- [D] E. D. Deloff, Naturally reductive metrics and metrics with volume preserving geodesic symmetries on NC algebras, Thesis, Rutgers, 1979.
- [G] C. Gordon, Naturally reductive Riemannian manifolds, preprint 1984.
- [G-W] Carolyn S. Gordon and Edward N. Wilson, The fine structure of transitive Riemannian isometry groups. I, Trans. Amer. Math. Soc. 289 (1985), no. 1, 367–380. MR 779070, https://doi.org/10.1090/S0002-9947-1985-0779070-3
- [H] Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- [K] Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. MR 0355886
- [LM] M. L. Leite and I. Dotti de Miatello, Metrics of negative Ricci curvature on 𝑆𝐿(𝑛,𝑅), 𝑛≥3, J. Differential Geometry 17 (1982), no. 4, 635–641 (1983). MR 683168
- [M] John Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329. MR 425012, https://doi.org/10.1016/S0001-8708(76)80002-3
- [WZ] Wolfgang Ziller, Homogeneous Einstein metrics, Global Riemannian geometry (Durham, 1983) Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1984, pp. 126–135. MR 757214
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C30, 53C25
Retrieve articles in all journals with MSC: 53C30, 53C25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0740188-7
Article copyright:
© Copyright 1984
American Mathematical Society