Applications of the joint angular field of values
HTML articles powered by AMS MathViewer
- by George Phillip Barker
- Proc. Amer. Math. Soc. 91 (1984), 331-335
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744623-X
- PDF | Request permission
Abstract:
Let ${A_1}, \ldots ,{A_m}$ be $n \times n$ hermitian matrices and let ${\mathcal {H}_n}$ be the real space of $n \times n$ hermitian matrices. If ${\operatorname {span}}\left \{ {{A_1}, \ldots ,{A_m}} \right \} = {\mathcal {H}_n}$, then the extreme rays of the joint angular field of values of $\left \{ {{A_1}, \ldots ,{A_m}} \right \}$ are determined. Then this cone is used to give necessary and sufficient conditions for the existence of hermitian matrices ${B_1}, \ldots ,{B_m}$ such that ${A_1} \otimes {B_1} + \cdots + {A_m} \otimes {B_m}$ preserves the cone of the positive semidefinite matrices where $A \otimes B$ is the dyad product $A \otimes B\left ( H \right ) = \left ( {{\text {tr}}BH} \right )A$.References
- George Phillip Barker and David Carlson, Cones of diagonally dominant matrices, Pacific J. Math. 57 (1975), no. 1, 15–32. MR 404302
- George Phillip Barker, Richard D. Hill, and Raymond D. Haertel, On the completely positive and positive-semidefinite-preserving cones, Linear Algebra Appl. 56 (1984), 221–229. MR 724562, DOI 10.1016/0024-3795(84)90127-7
- Abraham Berman and Adi Ben-Israel, More on linear inequalities with applications to matrix theory, J. Math. Anal. Appl. 33 (1971), 482–496. MR 279117, DOI 10.1016/0022-247X(71)90072-2
- F. F. Bonsall and J. Duncan, Numerical ranges. II, London Mathematical Society Lecture Note Series, No. 10, Cambridge University Press, New York-London, 1973. MR 0442682
- Man Duen Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285–290. MR 376726, DOI 10.1016/0024-3795(75)90075-0
- John de Pillis, Linear transformations which preserve hermitian and positive semidefinite operators, Pacific J. Math. 23 (1967), 129–137. MR 222101
- P. A. Fillmore and J. P. Williams, Some convexity theorems for matrices, Glasgow Math. J. 12 (1971), 110–117. MR 308159, DOI 10.1017/S0017089500001221 Ju. M. Glazman and Ju. I. Ljubic, Finite dimensional linear analysis, M.I.T. Press, Cambridge, Mass., 1974.
- Bit Shun Tam, Some results of polyhedral cones and simplicial cones, Linear and Multilinear Algebra 4 (1976/77), no. 4, 281–284. MR 429953, DOI 10.1080/03081087708817164
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 331-335
- MSC: Primary 15A60
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744623-X
- MathSciNet review: 744623