ON MAXIMA OF TAKAGI-VAN DER WAERDEN FUNCTIONS
YOSHIKAZU BABA

ABSTRACT. Generalizing Takagi's function $F_2(x)$ and van der Waerden's function $F_{10}(x)$, we introduce a class of nowhere differentiable continuous functions $F_r(x)$, $r \geq 2$. Some properties of $F_r(x)$ concerning especially maxima are discussed. When r is even, the Hausdorff dimension of the set of x's giving the maxima of $F_r(x)$ is proved to be $1/2$.

1. Introduction. Let $d(x)$ be the distance from x to the nearest integer. The function $d(x)$ is continuous and periodic with period 1. Fix an integer $r \geq 2$ and define $F_r^n(x) = \sum_{k=0}^{n} d(r^k x) / r^k$. When n tends to infinity, $F_r^n(x)$ converges uniformly to a continuous and periodic (with period 1) function $F_r(x)$. Further, $F_r(x)$ is proved to be everywhere nondifferentiable. As a simple example of a nowhere differentiable continuous function, T. Takagi [1] discovered $F_2(x)$ and a quarter of a century later B. L. van der Waerden [2] rediscovered $F_{10}(x)$. Takagi's proof of the nowhere differentiability of $F_2(x)$ is applicable to any $r \geq 3$ with a slight modification when r is odd. Recently, B. Martynov [3] discussed the structure of the set $E_2 = \{0 < x < 1; F_2(x) = M_2\}$ where $M_2 = \max F_2(x)$ and the result is that $x = 0.x_1x_2 \cdots x_n \cdots$ (the base-4 expansion of x) belongs to E_2 if and only if $x_n = 1$ or 2 for any $n \geq 1$. From this result we can easily see that the Hausdorff dimension of E_2 is equal to $\log 2 / \log 4 = 1/2$. This has a relation to the fact that the Hausdorff dimension of the set of zeros of the Brownian motion $B(t, \omega)$ is equal to $1/2$ and the sample functions of $B(t, \omega)$ are nowhere differentiable continuous ones for almost all ω. In this paper we show that for any even $r \geq 2$ the Hausdorff dimension of the set $E_r = \{0 \leq x \leq 1; F_r(x) = M_r = \max F_r(x)\}$ is equal to $1/2$ generalizing Martynov's arguments to $r \geq 2$.

2. Functional equations.

PROPOSITION 1. The function $F_r(x)$ satisfies the following functional equations:

1. \[F_r(rx) = rF_r(x) - rd(x), \]

2. \[F_r(x) = F_r^1(x) + \frac{1}{r^2} F_r(r^2 x). \]

PROOF. First,

\[F_r^n(rx) = r(d(rx)/r + \cdots + d(r^{n+1} x)/r^{n+1}) \]
\[= r(F_r^{n+1}(x) - d(x)). \]
Taking the limit of the both sides, we have (1). Next,
\[F_r(r^2x) = rF_r(rx) - rd(rx) = r(rF_r(x) - rd(x)) - rd(rx) = r^2(F_r(x) - F_r^1(x)). \]
This implies (2).

PROPOSITION 2. The function \(F_r(x) \) is the unique bounded solution of the functional equation
\[(1') \quad f(rx) = rf(x) - rd(x). \]

PROOF. Substituting \(r^{k-1}x \) for \(x \) in \((1') \) and dividing both sides of the resulting equation by \(r^k \), we have
\[\frac{f(r^kx)}{r^k} = \frac{f(r^{k-1}x)}{r^{k-1}} - \frac{d(r^{k-1}x)}{r^{k-1}}. \]
Summing up these for \(k = 1 \) to \(n \), we have
\[\frac{f(r^nx)}{r^n} = f(x) - \sum_{k=0}^{n-1} \frac{d(r^kx)}{r^k}. \]
Letting \(n \to \infty \) in the both sides, we obtain \(f(x) = F_r(x) \).

REMARK. The functional equation \((1') \) for \(r = 2 \) is a special case of the functional equation studied by M. Yamaguti and M. Hata [4].

3. \(E_r \) and \(M_r \). Observing the graphs of the functions \(F_r^1(x), F_r^2(x), \ldots \), we can easily see that (i) if \(r \) is odd, then \(E_r = \{1/2\} \) and
\[M_r = F_r \left(\frac{1}{2} \right) = \frac{1}{2} \left(1 + \frac{1}{r} + \frac{1}{r^2} + \cdots \right) = \frac{r}{2r - 2} \]
and (ii) if \(r \) is even, then \(F_r^1(x) = 1/2 \) for all \(x \) in the interval \([(r-1)/2r, (r+1)/2r] \). Therefore, in the following, we consider only the case of even \(r \)’s.

PROPOSITION 3.
\[(3) \quad E_r \subset \left[\frac{r}{2r + 2}, \frac{r + 2}{2r + 2} \right] \subset \left[\frac{r - 1}{2r}, \frac{r + 1}{2r} \right], \]
\[(4) \quad M_r = \frac{r^2}{2r^2 - 2} \left(= F_r \left(\frac{r}{2r + 2} \right) = F_r \left(\frac{r + 2}{2r + 2} \right) \right) \]

PROOF. First, by the periodicity of the function \(F_r(x) \), we have
\[F_r \left(\frac{r}{2r + 2} \right) = F_r^1 \left(\frac{r}{2r + 2} \right) + \frac{1}{r^2} F_r \left(\frac{r^3}{2r + 2} \right) = \frac{1}{2} + \frac{1}{r^2} F_r \left(\frac{r}{2r + 2} \right). \]
Therefore \(F_r(r/(2r + 2)) = r^2/(2r^2 - 2) \) and this is equal to \(F_r((r + 2)/(2r + 2)) \) since the function \(F_r(x) \) is symmetric with respect to 1/2. Next, take \(x \in E_r \) with \(x \leq 1/2 \). Then \(F_r(rx) = rF_r(x) - rd(x) = rF_r(x) - rx \leq M_r \), therefore we have
\[x \geq \frac{r - 1}{r} M_r \geq \frac{r - 1}{r} F_r \left(\frac{r}{2r + 2} \right) = \frac{r}{2r + 2}. \]
From this and by the symmetric property of $F_r(x)$ follows (3). To obtain (4) take $x \in E_r$, then

$$M_r = F_r(x) = F_r^1(x) + \frac{1}{r^2} F_r(r^2 x) \leq \frac{1}{2} + \frac{1}{r^2} M_r.$$

From this follows

$$M_r \leq \frac{1}{2(1 - 1/r^2)} = \frac{r^2}{2r^2 - 2} = F_r\left(\frac{r}{2r + 2}\right),$$

obtaining (4).

Proposition 4. (i) If $x \in E_r$, then the fractional part of $r^2 x$ ($= \{r^2 x\}$) also belongs to E_r.

(ii) If $F_r(r^2 x) = M_r$ and $x \in [(r - 1)/2r, (r + 1)/2r]$, then $x \in E_r$.

Proof. (i) If $x \in E_r$, then

$$\frac{r^2}{2(r^2 - 1)} = F_r(x) = \frac{1}{2} + \frac{1}{r^2} F_r(r^2 x).$$

Therefore $F_r(r^2 x) = r^2/2(r^2 - 1)$ from which follows $\{r^2 x\} \in E_r$ by the periodicity of $F_r(x)$.

(ii) By the assumptions we have

$$F_r(x) = \frac{1}{2} + \frac{1}{r^2} F_r(r^2 x) = \frac{1}{2} + \frac{1}{2(r^2 - 1)} = \frac{r^2}{2(r^2 - 1)},$$

obtaining $x \in E_r$.

Proposition 5. Suppose $x \in E_r$ and k is a positive integer. Then we have $(x + k)/r^2 \in E_r$ if and only if $(r^2 - r)/2 < k \leq (r^2 + r - 2)/2$.

Proof. If $(x + k)/r^2 \in E_r$, then

$$\frac{r}{2r + 2} \leq \frac{x + k}{r^2} \leq \frac{r + 2}{2r + 2}.$$

To satisfy these inequalities, it is necessary for k to be in the interval $[(r^2 - r)/2, (r^2 + r - 2)/2]$ as is easily checked. Conversely, if $(r^2 - r)/2 \leq k \leq (r^2 + r - 2)/2$, then for $x \in E_r$ the inequalities

$$\frac{r - 1}{2r} \leq \frac{x + k}{r^2} \leq \frac{r + 1}{2r}$$

hold as is easily seen and $F_r(r^2(x + k)/r^2) = F_r(x + k) = M_r$ because of the periodicity of $F_r(x)$. By (ii) of Proposition 4 follows $(x + k)/r^2 \in E_r$.

Remark. The number of the integers k satisfying the inequalities $(r^2 - r)/2 \leq k \leq (r^2 + r - 2)/2$ is equal to r.

4. Base-r^2 expansion. Put $\alpha = (r^2 - r)/2$ and $\beta = (r^2 + r - 2)/2$. Let us expand the smallest and the largest numbers of E_r into base-r^2 decimals (r^2-mals). Then

$$\frac{r}{2r + 2} = \left(\sum_{n=1}^{\infty} \frac{1}{(r^2)^n}\right) \alpha = 0.\overline{\alpha}\cdots\alpha\cdots = 0.\dot{\alpha}$$

and

$$\frac{r + 2}{2r + 2} = \left(\sum_{n=1}^{\infty} \frac{1}{(r^2)^n}\right) \beta = 0.\overline{\beta}\cdots\beta\cdots = 0.\dot{\beta}.$$
Generally we have the following proposition.

PROPOSITION 6. Let \(x = 0.x_1x_2 \cdots x_n \cdots \) be the base-\(r^2 \) expansion of \(x \in [0,1] \). Then, \(x \in E_r \) if and only if \(\alpha \leq x_n \leq \beta \) for any \(n \geq 1 \).

PROOF. Since \(r/(2r + 2) \) and \((r + 2)/(2r + 2)\) belong to \(E_r \), if integers \(x_1, x_2, \ldots, x_n \) are contained in the interval \([\alpha, \beta] \), then by applying \(n \) times (ii) of Proposition 4, we have \(0.x_1x_2 \cdots x_n \alpha \in E_r \) and \(0.x_1x_2 \cdots x_n \beta \in E_r \). From this follows \(0.x_1x_2 \cdots x_n \cdots \in E_r \) by the continuity of \(E_r(x) \). Conversely, if there exists an integer \(x_n \notin [\alpha, \beta] \) in the base-\(r^2 \) expansion \(0.x_1x_2 \cdots x_n \cdots \in E_r \), then by using \(n - 1 \) times (i) of Proposition 4, we have \(0.x_nx_{n+1} \cdots \in E_r \) and this contradicts to \(E_r \subset [0.\alpha, 0.\beta] \).

5. Hausdorff dimension.

THEOREM. For any even integer \(r \geq 2 \), we have \(\dim E_r = 1/2 \).

PROOF. For all positive integers \(n \), \(E_r \) can be covered by \(r^n \), and no fewer than \(r^n \), intervals of length \(r^{-2n} \). Therefore, for every positive real number \(s < 1 \), \(E_r \) can be covered by \(r^{n+1} \), and no fewer than \(r^n \), intervals of length \(s \), where

\[
 n = \left\lceil -\log s/2\log r \right\rceil.
\]

But

\[
 \lim_{s \to 0} \log r^n/(-\log s) = \lim_{s \to 0} \log r^{n+1}/(-\log s) = 1/2,
\]

so \(\dim E_r = 1/2 \).

ACKNOWLEDGEMENT. I am grateful to the referee for simplifying the proof of the theorem.

REFERENCES

3. B. Martynov, On maxima of the van der Waerden function, Kvant, June 1982, 8–14. (Russian)

Faculty of Liberal Arts, Shizuoka University, Shizuoka 422, Japan