Topological minimax theorems
HTML articles powered by AMS MathViewer
- by Michael A. Geraghty and Bor-Luh Lin
- Proc. Amer. Math. Soc. 91 (1984), 377-380
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744633-2
- PDF | Request permission
Abstract:
Mimimax theorems are given using only topological conditions.References
- Jean-Pierre Aubin, Mathematical methods of game and economic theory, Studies in Mathematics and its Applications, vol. 7, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 556865
- Szymon Dolecki, Gabriella Salinetti, and Roger J.-B. Wets, Convergence of functions: equi-semicontinuity, Trans. Amer. Math. Soc. 276 (1983), no. 1, 409–430. MR 684518, DOI 10.1090/S0002-9947-1983-0684518-7
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Ky Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42–47. MR 55678, DOI 10.1073/pnas.39.1.42
- L. McLinden and Roy C. Bergstrom, Preservation of convergence of convex sets and functions in finite dimensions, Trans. Amer. Math. Soc. 268 (1981), no. 1, 127–142. MR 628449, DOI 10.1090/S0002-9947-1981-0628449-5
- Frode Terkelsen, Some minimax theorems, Math. Scand. 31 (1972), 405–413 (1973). MR 325880, DOI 10.7146/math.scand.a-11441
- Wen-chün Wu, A remark on the fundamental theorem in the theory of games, Sci. Record (N.S.) 3 (1959), 229–233. MR 122587
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 377-380
- MSC: Primary 49A40; Secondary 90C48
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744633-2
- MathSciNet review: 744633