$L^{2}\textrm {_{}loc}$-boundedness for a class of singular Fourier integral operators
HTML articles powered by AMS MathViewer
- by A. El Kohen
- Proc. Amer. Math. Soc. 91 (1984), 389-394
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744636-8
- PDF | Request permission
Abstract:
We consider operators of the form $\int _{-\infty }^\infty {{F_t}} \phi \left ( t \right )dt$ where ${F_t}$ is a $1$-parameter family of Fourier integral operators and $\phi \left ( t \right )dt$ a tempered distribution on the real line. We extend the result given in [1].References
- A. El Kohen, On Fourier integral operators, Proc. Amer. Math. Soc. 85 (1982), no. 4, 567–571. MR 660606, DOI 10.1090/S0002-9939-1982-0660606-0 F. Treves, Pseudo-differential and Fourier integral operators, vols. 1 and 2, The Univ. Ser. in Math., Plenum Press, New York, 1980. S. Wainger and G. Weiss (eds.), Proc. Sympos. Pure Math., vol. 35, Part 1, Amer. Math. Soc., Providence, R.I., 1979.
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 91 (1984), 389-394
- MSC: Primary 47G05; Secondary 35S05, 42A38
- DOI: https://doi.org/10.1090/S0002-9939-1984-0744636-8
- MathSciNet review: 744636