Abstract. It is shown that if \(g \in C^1(\mathbb{C})\) with \(\bar{\partial}g\) nonvanishing on the support of \(\mu\) and if \(P^2(\mu)\) has no bounded point evaluations, then \(\text{sp}\{P^2(\mu) + gP^2(\mu)\} = L^2(\mu)\). Similar theorems stating that in the absence of bounded point evaluations \(P^2(\mu)\) is “almost” \(L^2(\mu)\) are derived. As a consequence, to show that \(P^2(\mu) = L^2(\mu)\) in the absence of bounded point evaluations, one need only show that, for example, \(\sqrt{z - \lambda} \in P^2(\mu)\) for complex \(\lambda\)’s.

Let \(\mu\) denote a finite positive Borel measure with compact support in the complex plane. Let \(P^2(\mu)\) denote the closure in \(L^2(\mu)\) of the polynomials in \(z\). A question of interest is to determine when \(P^2(\mu) = L^2(\mu)\). If \(\mu\) is supported on the boundary of the unit circle, \(\partial D\), such a characterization has been given by a classical result of Szegö [5]: either \(P^2(\mu) = L^2(\mu)\) or else \(P^2(\mu)\) has a bounded point evaluation. \(P^2(\mu)\) has a bounded point evaluation (or b.p.e.) at \(w\) in the complex plane \(C\) whenever there exists a constant \(C\) with \(0 < C < \infty\) and \(|p(w)| < C\|p\|_{L^2(\mu)}\) for all \(p \in P^2(\mu)\). For measures \(\gamma\) absolutely continuous with respect to area Lebesgue measure \(m\), a result analogous to Szegö’s theorem has been discovered by Brennan [1–4] and Hruschev (see [4]), with the mild hypothesis that \(d\gamma/dm\) belong to \(L(\log^+ L)^2(m)\). In this note we show that if \(P^2(\mu)\) has no b.p.e.’s, then \(P^2(\mu)\) and \(L^2(\mu)\) cannot differ by “too” much. As a consequence, to show that \(P^2(\mu) = L^2(\mu)\) in the absence of bounded point evaluations, one need only show that, for example, \(\sqrt{z - \lambda} \in P^2(\mu)\) for complex \(\lambda\)’s.

Denote the support of \(\mu\) by \(K\). Let \(g\) be a continuously differentiable function on \(C\) with \(\bar{\partial}g\) nonvanishing on \(K\), where \(\bar{\partial}\) denotes the operator \(1/2(\partial x + i\partial y)\). Let \(\{g_i\}_{i \in I} \subset L^\infty(\mu)\). By \(\text{sp}\{g_iP^2(\mu): i \in I\}\) we mean the \(\{\sum_{j=1}^{K} g_{ij}p_j: i_j \in I\}\) and \(p_j \in P^2(\mu)\) for \(j = 1, 2, \ldots, K\).

Theorem 1. Suppose \(P^2(\mu)\) has no b.p.e.’s. Then \(\text{sp}\{P^2(\mu) + gP^2(\mu)\} = L^2(\mu)\).

Proof. Let \(f \in L^2(\mu)\) with \(f \perp [P^2(\mu) + gP^2(\mu)]\). Then for all \(\lambda \in \mathbb{C}\) and any polynomial \(p\)

\[
0 = \int_K \frac{p(z) - p(\lambda)}{z - \lambda} (g(z) - g(\lambda)) f(z) \, d\mu(z).
\]
So

\(p(\lambda) \int_K \frac{g(z) - g(\lambda)}{z - \lambda} \overline{f(z)} \, d\mu(z) = \int_K p(z) \left(\frac{g(z) - g(\lambda)}{z - \lambda} \right) \overline{f(z)} \, d\mu(z). \)

Without loss of generality assume that \(g \in C^1_c(\mathbb{C}) \). Thus for any

\(\frac{g(z) - g(\lambda)}{z - \lambda} f(z) \in L^2(\mu). \)

Suppose that for some \(\lambda \) in \(\mathbb{C} \)

\(\int_K \frac{g(z) - g(\lambda)}{z - \lambda} \overline{f(z)} \, d\mu(z) \neq 0. \)

Then from (1) \(P^2(\mu) \) has a b.p.e. at \(\lambda \), contrary to hypothesis. Hence

\(0 = \int_K \frac{g(z) - g(\lambda)}{z - \lambda} \overline{f(z)} \, d\mu(z) \) for all \(\lambda \) in \(\mathbb{C} \).

But by Lemma 3 in [6], for any \(h \in C^2_c(\mathbb{C}) \) with \(h \equiv 0 \) in a neighborhood of the zero set of \(\overline{\partial} g \) we have

\(h(w) = \frac{1}{\pi} \int_C \overline{\partial} s(z) \frac{g(z) - g(w)}{z - w} \, dm(z) \)

for all \(w \) in \(\mathbb{C} \) and some \(s \in C^1_c(\mathbb{C}) \). Since \(\overline{\partial} g \) does not vanish on \(K \) such \(h \)'s are dense in \(L^2(\mu) \). Combining (2) and (3) with Fubini's theorem gives \(f = 0 \) in \(L^2(\mu) \). \(\square \)

Note that it is easy to see that \(P^2(\mu) \oplus gP^2(\mu) = L^2(\mu) \) can happen only in trivial cases.

If it could be shown that \(g \) itself is in \(P^2(\mu) \) when \(P^2(\mu) \) has no b.p.e.'s, then \(P^2(\mu) = L^2(\mu) \) and the main problem is solved. This direct approach seems unlikely since the \(g \)'s for which the theorem holds are far from analytic on \(K \) and thus difficult to place in \(P^2(\mu) \). Perhaps the following version might be more useful. Here \(g \) is replaced by a collection of functions, but each function is analytic except on negligible sets with respect to \(\mu \).

For \(z = r e^{i\theta} \) with \(r \geq 0 \) and \(0 \leq \theta < 2\pi \), let \(\sqrt{z} = r^{1/2} e^{i\theta/2} \). Then for \(\lambda \) in \(\mathbb{C} \), \(\sqrt{z - \lambda} \) is analytic in \(z \) on \(\mathbb{C} - \{\lambda + t: t \geq 0\} \). It is easy to check that \((z, \lambda) \mapsto \sqrt{z - \lambda} \) is Borel measurable from \(\mathbb{C} \times \mathbb{C} \to \mathbb{C} \). We have the following theorem.

THEOREM 2. Suppose that \(P^2(\mu) \) has no b.p.e.'s. Then

\[\text{sp}\left\{ P^2(\mu) + \sqrt{z - \lambda} P^2(\mu): \lambda \in \mathbb{C} \right\} = L^2(\mu). \]

PROOF. Suppose that \(f \in L^2(\mu) \) and \(f \perp \left[P^2(\mu) + \sqrt{z - \lambda} P^2(\mu) \right] \) for \(m \)-a.e. \(\lambda \) in \(\hat{K} \), the union of \(K \) and all the “holes” in \(K \). For \(p \) a polynomial

\[0 = \int_K p(z) - p(\lambda) \frac{\sqrt{z - \lambda}}{\sqrt{z - \lambda}} \overline{f(z)} \, d\mu(z) \quad \lambda \text{ a.e.-}m \text{ in } \hat{K}. \]

As before we claim that \(P^2(\mu) \) has a b.p.e. unless \(m \)-a.e. \(\lambda \in \hat{K} \) satisfies

\[0 = \int_K \frac{\sqrt{z - \lambda}}{\sqrt{z - \lambda}} \overline{f(z)} \, d\mu(z) = \mu_0(\lambda). \]
This follows from (4) since
\[p(\lambda)\mu_0(\lambda) = \int_K p(z) \left[\frac{\sqrt{z^2 - 4\lambda}}{z - \lambda} \right] d\mu(z), \]
and \((\sqrt{z^2 - 4\lambda}/(z - \lambda))f(z) \in L^2(\mu) \) for \(m\text{-a.e.} \lambda \) in \(K \). The last fact holds by Fubini's theorem, since
\[\int_K \left(\int_L \left| \frac{\sqrt{z - \lambda}}{z - \lambda} f(z) \right|^2 d\mu(z) \right)^{1/2} dm(\lambda) \leq C_L \|f\|_{L^2(\mu)}^2, \]
where \(L \) is a disc containing \(K \) and \(C_L \) is a constant.

We show that (5) implies that \(f = 0 \) in \(L^2(\mu) \). Let \(\phi \in C_0^\infty(L) \). Then
\[
0 = \int_L \frac{\partial \phi(\lambda)}{\sqrt{z - \lambda}} f(z) d\mu(z) dm(\lambda)
= \int_K f(z) \left[\int_L \frac{\partial \phi(\lambda)}{\sqrt{z - \lambda}} dm(\lambda) \right] d\mu(z).
\]
Let \(L_e \) denote \(L \) with an \(e \)-strip, \(S_e \), about the ray \(t + i \text{Im} z, t \leq \text{Re} z \), and the disc \(\Delta_e(z) \) removed. Then
\[\lim_{e \downarrow 0} \int_{L_e} \frac{\partial \phi(\lambda)}{\sqrt{z - \lambda}} dm(\lambda) = \int_{L} \frac{\partial \phi(\lambda)}{\sqrt{z - \lambda}} dm(\lambda). \]

On the other hand, by Green's Theorem
\[\int_{L_e} \frac{\partial \phi(\lambda)}{\sqrt{z - \lambda}} dm(\lambda) = \frac{1}{2i} \int_{\partial L \cap \partial L_e} \frac{\phi(\lambda)}{\sqrt{z - \lambda}} d\lambda - \int_{-\pi/2}^{\pi/2} \phi(z + ee^{i\theta}) ee^{i\theta} d\theta \]
\[- \int_{-\infty}^0 \frac{\phi(t - i\epsilon + z)}{\sqrt{-t + i\epsilon}} dt + \int_{-\infty}^0 \frac{\phi(t + i\epsilon + z)}{\sqrt{-t - i\epsilon}} dt. \]

The first integral is 0, since \(\phi \in C_0^\infty(L) \). As \(e \downarrow 0 \) the second integral converges to 0, while the square roots in the third and fourth integrands converge to \(\sqrt{-t} \) and \(-\sqrt{-t} \), respectively. Thus
\[\int_{L} \frac{\partial \phi(\lambda)}{\sqrt{z - \lambda}} dm(\lambda) = i \int_{-\infty}^0 \frac{\phi(t + z)}{\sqrt{-t}} dt. \]
Let \(\phi(x, y) = \psi(x)\alpha(y) \), where \(\psi \) and \(\alpha \) are in \(C_0^\infty(R) \). Then
\[\int L \frac{\partial \phi(\lambda)}{\sqrt{z - \lambda}} dm(\lambda) = i \int \frac{\psi(x - t)}{\sqrt{t}} dt. \]

Fix \(A > \max\{|\text{Re} z|: z \in L\} \). Notice that
\[\int \psi(x - t) x^{(n-1)}(x - t)^{n-1} dt = \int \psi(x - t)^n dt \quad \text{for } |x| \leq A. \]
This last expression is \(x + A \), \(n \)-times a polynomial in \(x \) of degree \(n \), \(p_n(x) \). (The leading coefficient of \(p_n(x) \) is \(n! u^{-1/2}(1 - u)^n du > 0 \).) Choose \(\psi \)'s to approximate \(t^n x^{(n-1)}(x - t)^{n-1} \) pointwise boundedly. Combining (6), (7), and (8), we see that \(f \perp \alpha(y)\sqrt{x + A} p_n(x) \) (since the support of \(\mu \) is contained in \(L \)). Thus by the Stone-Weierstrass theorem \(\sqrt{x + A} f = 0 \) in \(L^2(\mu) \), so \(f = 0 \) in \(L^2(\mu) \). \(\square \)
It is not difficult to replace the branch chosen for Theorem 2 by a more complicated one; say a Jordan arc which is piecewise smooth and rectifiable in L. In fact the choice of branch may depend on λ if the perturbation is smooth. Also $\sqrt{z - \lambda}$ may be replaced by $\sqrt[\alpha]{z - \lambda}$, $\alpha > 0$, or, for example, by $(z - \lambda)\log(z - \lambda)$. Since the total variation of μ is finite, the μ measure of horizontal lines is zero, except for at most a countable set. Thus the $\sqrt{z - \lambda}$'s needed for Theorem 2 may be restricted so that $\sqrt{z - \lambda}$ is analytic μ-a.e.

We prove a similar theorem where the branches of $\sqrt{\cdot}$ vary, but where the base of $\sqrt{\cdot}$ is fixed. For each $\alpha \in [0, 2\pi)$ we define a function $f_\alpha(z) = r^{1/2}e^{i\theta/2}$, where $z = re^{i\theta}$ is chosen so that $\alpha < \theta < 2\pi + \alpha$. For this theorem no assumption concerning b.p.e.'s is needed.

Theorem 3. $\text{sp}\{ P^2(\mu) + f_\alpha(z)P^2(\mu) : \alpha \in [0, 2\pi) \} = L^2(\mu)$.

Proof. Let $0 < \alpha < \beta < 2\pi$. Then

$$
\frac{f_\beta(z) - f_\alpha(z)}{2} = \begin{cases}
0 & \text{if } \arg z \in [\beta, 2\pi + \alpha) \mod 2\pi, \\
-f_\alpha(z) & \text{if } \arg z \in [\alpha, \beta) \mod 2\pi.
\end{cases}
$$

Denote by \mathcal{L} the closed linear span of $\{ P^2(\mu) + f_\alpha(z)P^2(\mu) : \alpha \in [0, 2\pi) \}$. From (9) $f_\alpha(z)(z: \arg z \in [\alpha, \beta) \mod 2\pi)(p(z) \in \mathcal{L}$ for every polynomial p and $0 < \alpha < \beta < 2\pi$. Thus by approximation $f_\alpha(z)h(\arg z)z^n \in \mathcal{L}$ for every nonnegative integer n and every continuous function h on $[0, 2\pi]$ with $h(0) = h(2\pi)$. If m is a nonnegative integer take $h(\arg z) = z^m/z^{|m|+n}$; if m is a negative integer let $h(\arg z) = z^{-m}/|z|^{-m}$. In either case

$$
f_\alpha(z)h(\arg z)z^n = f_\alpha(re^{i\theta})r^ne^{i\theta} \in \mathcal{L},
$$

where $z = re^{i\theta}$. By the Stone-Weierstrass theorem $\text{sp}\{r^ne^{im\theta} : n \in N, m \in Z\}$ is dense in $C(K)$. Thus if $k \in L^2(\mu)$ satisfies $k \perp \mathcal{L}$, then $f_\alpha(z)k(z) \, d\mu$ is the zero measure. Hence $kd\mu = c\delta_0$, but $1 \in \mathcal{L}$ so $k = 0$ in $L^2(\mu)$. □

It is clear that only a dense subset of α's in $[0, 2\pi)$ is needed for Theorem 3. Again a similar argument holds for $z\log_a z$, where $\log_a(z) = \ln(z) + i \arg z$ and $\alpha \leq \arg z < \alpha + 2\pi$. Also a smooth one parameter family of nonintersecting smooth Jordan arcs emanating from a base point to ∞ can replace the radial lines.

Note. (a) The case $g(z) = \bar{z}$ of Theorem 1 was independently discovered and orally communicated to us by J. Thomson and R. Olin.

(b) When K is simply connected with empty interior, arguments involving b.p.e.'s and a result analogous to Theorem 2 lead to a new proof of a theorem of Lavrentieff on the uniform approximation of continuous functions on K by polynomials.

The authors wish to thank the reviewer for several valuable comments.

References

Department of Mathematics, University of Alabama (Tuscaloosa), University, Alabama 35486